Browsing by Author "Ferraz, Eduardo"
Now showing 1 - 10 of 23
Results Per Page
Sort Options
- An insight into the surface properties of calcined kaolinitic clays: The grinding effectPublication . Gamelas, José; Ferraz, Eduardo; Rocha, FernandoThe present work aimed characterizing in a systematic way the surface of metakaolinitic materials produced by calcination of a kaolinitic clay at different temperatures and to study the effect of grinding on the surface properties of metakaolinitic materials. Using X-ray photoelectron spectroscopy, it was found for all materials a Si/Al atomic ratio close to 1, confirming the presence of the 1:1 clay structure. By inverse gas chromatography, an increase of the Lewis basic properties of the surfaces of metakaolinitic materials in comparison to the original clay was found, which was due to the condensation of hydroxyl groups in the structure of the clay. The grinding of the metakaolinitic materials afforded a decrease of the dispersive component of the surface energy () as well as an increase of the specific interaction with sterically hindered molecules, caused by the diminishing of the materials surface nanoroughness. The Lewis basic properties of the materials surface also increased with grinding. Noticeably, for all studied materials a good inverse relation could be found between the and the specific interaction of trichloromethane (but not with dichloromethane), showing the importance of surface nanoroughness on the adsorption process of bulky molecules.
- A app das Ciências Participativas: das práticas ancestrais à produção de conhecimentoPublication . Teixeira, Vitor; Garcês, Sara; Borralheiro, Anabela; Gomes, Hugo; Cardoso, Douglas O.; Trindade, Anícia; Ferraz, Eduardo; Oosterbeek, Luiz
- Clays from Vila Nova da Rainha (Portugal): Appraisal of their relevant properties in order to be used in construction ceramicsPublication . Coroado, João; Ferraz, Eduardo; Gomes, Celso F.; Rocha, FernandoThe clay deposit of Vila Nova da Rainha (VNR) is included in the lithostratigraphic forma tion named “Argilas de Tomar”, and is located at the lower section of the Tert iary Tagus’ river basin. Clay from one quarry is being extracted for the production of construction ceramics. In this work the firing transformations undergone by VNR cl ays containing quartz, alkaline feldspar, iron oxy-hydroxides, and clay minerals have been studied. Ca rbonates have not been identified in thes e raw materials. The clay layers can be subdivided in three groups based upon composition and ceramic properties. The first group, VNR0, is represented by smectite-kaolinite sandy-silty clay, the second group (VNR1 and VNR2) corresponds to illite-kaolinite bearing clay and the third group (VNR3 and VNR4) is represented by illite-smectite silty clay. The firing process involves the formation of hematite and mu llite both influencing the technical properties of the fired products. With regards to the ceramic properties assessed at 1100 ºC the first group showed the lowest total shrinkage value (7.35 %) the highest water absorption value (12.2 %) and the lo west mechanical bending strength value (12.0 MPa); the same properties assessed in the second group provi ded the highest firing shrinkage values (7.0-5.0 %), the lowest values of water absorption (0.1-0.2 %) and relatively high mechanical bending strength values (47.8-48.0 MPa); the third group showed firing shrinkage values within the range 3.5-4.2 %, water absorption values within the range 1.4-4.5 %, and the highest mechanical bending strength values (49.2-52.0 MPa). The results of the ceramic properties being appraised indicate that the raw materials being studied are suitable for the production of high-quality construction ceramics, such as brick, roof tile and rustic floor tile.
- Comparison of mineralogical, mechanical and hygroscopic characteristic of earthen, gypsum and cement-based plastersPublication . Santos, Tânia; Gomes, Maria Idália; Silva, António Santos; Ferraz, Eduardo; Faria, PaulinaIt is important to ensure indoor comfort by passive methods, avoiding mechanical equipment that has energy costs. To assess plasters common efficiency but also its contribution as moisture buffers, five different plastering mortars, including unstabilized and stabilized earth-based plasters, gypsum and cement-based pre-mixed plasters, were analyzed and their chemical, mechanical and hygroscopic characteristics compared. The materials and mortars were analyzed by X-ray diffraction and simultaneous thermal analysis. Linear shrinkage, dry bulk density, dynamic modulus of elasticity, flexural and compressive strengths, dry abrasion resistance, surface cohesion, surface hardness and sorption and desorption of mortars and plasters were also evaluated. The mechanical strength of earthen mortars is lower than gypsum and cement-based mortars. However, earth plasters show the highest hygroscopicity, acting as moisture passive buffers, improving thermal comfort and contributing to occupantś health.
- Comparison of Surface Properties of Sepiolite and Palygorskite: Surface Energy and NanoroughnessPublication . Almeida, Ricardo; Ferraz, Eduardo; Santarén, Julio; Gamelas, José A. F.The surface properties of two sepiolite samples and one palygorskite sample were compared using inverse gas chromatography (IGC). Samples were previously conditioned at appropriate temperatures for the removal of all zeolitic water. Dispersive (or Lifshitz–van der Waals) component of the surface energy (γsd), specific interactions (−ΔGas) with π electron donor bases (1-alkenes), and nanomorphology indices (IMχT) based on the injections of cycloalkanes and a branched alkane were measured. From IGC data, at 240 °C, it was found that the palygorskite was clearly distinguished from the sepiolites. The palygorskite possessed a lower γsd, larger −ΔGas with 1-alkenes, and remarkably higher IMχT. Slight differences could also be observed between the two sepiolite samples with the same origin. The results were rationalized in terms of the structural features of the two studied minerals. The larger channels of the sepiolite allow for a better insertion of the n-alkanes (longer retention times) while excluding the bulkier probes, such as cyclooctane or 2,2,4-trimethylpentane. Accordingly, the corresponding γsd values were larger and the IMχT values were lower (higher surface nanoroughness) for the sepiolites. Regarding Lewis acid–base properties, all the sample’s surfaces evidenced a very strong amphoteric character. The present results highlight the potential of the evaluated samples for, e.g., adsorption processes with volatile organic compounds or matrix–filler interactions regarding the production of composite structures with Lewis acid–base matrices.
- Composite Films Based on Nanocellulose and Nanoclay Minerals as High Strength Materials with Gas Barrier Capabilities: Key Points and ChallengesPublication . Gamelas, José; Ferraz, EduardoComposites of nanocellulose with layered silicates have recently emerged as a new type of composite materials offering superior strength, as well as thermal and gas barrier properties. These organic-inorganic hybrid composites with a nacre-like structure can be obtained from renewable resources and are environmentally friendly. They can potentially be presented as a serious alternative in the near future to several polymers or other polymer-inorganic composites, for applications in food packaging or electronic devices. The discussion here will be directed to: what are the new opportunities and challenges that arise for these materials aiming at their competition with well-established materials in the market.
- Composite Films of Nanofibrillated Cellulose with Sepiolite: Effect of Preparation StrategyPublication . Alves, Luis; Ramos, Ana; Rasteiro, Maria G.; Vitorino, Carla; Ferraz, Eduardo; Ferreira, Paulo J. T.; Puertas, Maria L.; Gamelas, José A. F.Cellulose nanofibrils (CNFs) are nanomaterials with promising properties to be used in food packaging and printed electronics, thus being logical substitutes to petroleum-based polymers, specifically plastics. CNFs can be combined with other materials, such as clay minerals, to form composites, which are environmentally friendly materials, with acceptable costs and without compromising the final properties of the composite material. To produce composite films, two strategies can be used: solvent casting and filtration followed by hot pressing. The first approach is the simplest way to produce films, but the obtained films may present some limitations. In the present work, CNFs produced using enzymatic or TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidation pretreatments, followed by high-pressure homogenization, or only by mechanical treatment (homogenization), were used to produce films by both the available procedures. The films obtained by filtration + hot pressing presented higher tensile strength and Young’s modulus compared with those obtained by solvent casting. In general, a decrease in the values of these mechanical properties of the films and a decrease in elongation at break, with the addition of sepiolite, were also observed. However, for the TEMPO CNF-based films, an improvement in tensile strength could be observed for 10% of the sepiolite content. Furthermore, the time necessary to produce films was largely reduced by employing the filtration procedure. Finally, the water vapour barrier properties of the films obtained by filtration are comparable to the literature values of net CNF films. Thus, this technique demonstrates to be the most suitable to produce CNF-based composite films in a fast way and with improved mechanical properties and suitable gas barrier properties.
- Composites of nanofibrillated cellulose with clay minerals: A reviewPublication . Alves, L.; Ferraz, Eduardo; Gamelas, J. A. F.Biopolymers-based composites are, in general, environmentally friendly materials, which can be obtained from renewable sources. Some of them can also present promising properties to be used in food packaging and electronic devices, being thus logical substitutes to petroleum-based polymers, specifically plastics. Cellulose nanofibrils (CNF) obtained by chemical/enzymatic pre-treatments followed by a mechanical treatment appear as a new suitable biomaterial. However, CNF are still quite expensive materials, due to the required chemicals/equipment/energy involved, and additionally, they present some limitations such as high hydrophilicity/high water vapour permeability. The combination of CNF with clay minerals, such as montmorillonite or kaolinite, as widely available geo-resources, represents an excellent way to reduce the amount of CNF used, enabling the production of valuable materials and reducing costs; and, at the same time it is possible to improve the characteristics of the formed materials, such as mechanical, gas barrier and fire retardancy properties, if appropriate conditions of preparation are used. Nevertheless, to obtain hybrid CNF/clay composites with superior properties it is necessary to ensure a good dispersion of the inorganic material in the CNF suspension and a good compatibility among the inorganic and organic components. To fulfil this goal, several strategies can be considered, including physical treatments of the suspensions, CNF and clay surface chemical modifications, and the use of a coupling agent. In this review article, the state-of-the-art on a new emerging generation of composites (films, foams or coatings) based on nanofibrillated cellulose and nanoclay, with focus on strategies for their preparation and most relevant achievements is critically reviewed, bearing in mind their potential application as substitutes for common plastics. A third component has been eventually added to these organic-inorganic hybrids, e.g., chitosan, carboxymethylcellulose, borate or epoxy resin, to enhance specific characteristics of the material. Some general background on the production of different types of CNF and their main properties is previously provided.
- Design of cellulose nanofibre-based composites with high barrier propertiesPublication . Alves, Luís; Ramos, Ana; Ferraz, Eduardo; J. T. Ferreira, Paulo; G. Rasteiro, Maria; A. F. Gamelas, JoséGas barrier properties are very relevant in composite materials for applications so diverse such as food packaging, electronics, or old document restoration. In the present work, four different types of cellulose nanofibres (CNFs), two types of clay minerals used individually (sepiolite) or combined (sepiolite + kaolinite), and the influence of pH, were explored in the production of composite films. Neat CNFs, only mechanically treated or prepared by enzymatic pre-treatment, gave films with good mechanical and barrier properties, but the addition of minerals led to a dramatic loss of these properties. Contrarily, the use of thin and functionalized fibrils (TEMPO-oxidised or cationized CNFs) gave composite films with good mechanical, thermal and barrier properties. Superior oxygen barrier properties (oxygen transmission rate (OTR) < 0.4 cm3 m−2 day−1) were obtained using TEMPO-oxidised CNF and 20% sepiolite, and, in general, for all the composite films containing the TEMPO CNF (OTR ≤ 1.8 cm3 m−2 day−1). The cationic CNF-based composites also showed a very good oxygen barrier (OTR ≤ 8.2 cm3 m−2 day−1). The high oxygen barrier could be explained by the compactness of the films and better entanglement of the more fibrillated nanocelluloses with the mineral particles. A decrease in the pH of the suspensions led to a decrease in the film preparation time, without a major negative impact on the composite film’s properties.
- Effect of the dispersion state of minerals on the properties of cellulose nanofiber-based composite filmsPublication . Alves, Luís; Ramos, Ana; Ferraz, Eduardo; Sanguino, Pedro; Santaren, Julio; Rasteiro, Maria Graça; Gamelas, José AFThe dispersion state and the efficiency of the mixture of the different components in a composite film have an important impact on its mechanical and optical properties. In the present work, the impacts of different dispersion treatments on the disaggregation state of fibrous clay particles in water, and on the properties of related cellulose nanofiber (CNF)-based composite films, were evaluated. X-ray diffraction studies, performed on samples of sepiolite and palygorskite, revealed only minor changes in the diffraction pattern when the minerals were subjected to ultrasonic treatment, with or without the addition of different chemical dispersing agents. Conversely, microscopic studies revealed important differences in the dispersion state of the samples, induced by the addition of the different dispersants, showing an improvement in the disaggregation of the mineral crystals. The composite films prepared with sepiolite (and carboxymethylcellulose, as chemical dispersant) dispersed using ultrasonic treatment, and different types of CNF, showed improved optical and mechanical properties when compared with composites of the same counterparts prepared with sepiolite dispersed using a high-speed shear disperser.
- «
- 1 (current)
- 2
- 3
- »