Loading...
Research Project
New generation of composite films of cellulose nanofibrils with mineral particles as high strength materials with gas barrier properties
Funder
Authors
Publications
Filmes de celulose nanofibrilada com incorporação de minerais: uma nova geração de materiais para embalagens alimentares e eletrónica impressa
Publication . Alves, Luís; Aragão, António; Ferraz, Eduardo; Santarén, Júlio; Ferreira, Paulo J. T.; Ramos, Ana; Rasteiro, Maria G.; Gamelas, José A. F.
Effect of the dispersion state of minerals on the properties of cellulose nanofiber-based composite films
Publication . Alves, Luís; Ramos, Ana; Ferraz, Eduardo; Sanguino, Pedro; Santaren, Julio; Rasteiro, Maria Graça; Gamelas, José AF
The dispersion state and the efficiency of the mixture of the different components in a composite film have an important impact on its mechanical and optical properties. In the present work, the impacts of different dispersion treatments on the disaggregation state of fibrous clay particles in water, and on the properties of related cellulose nanofiber (CNF)-based composite films, were evaluated. X-ray diffraction studies, performed on samples of sepiolite and palygorskite, revealed only minor changes in the diffraction pattern when the minerals were subjected to ultrasonic treatment, with or without the addition of different chemical dispersing agents. Conversely, microscopic studies revealed important differences in the dispersion state of the samples, induced by the addition of the different dispersants, showing an improvement in the disaggregation of the mineral crystals. The composite films prepared with sepiolite (and carboxymethylcellulose, as chemical dispersant) dispersed using ultrasonic treatment, and different types of CNF, showed improved optical and mechanical properties when compared with composites of the same counterparts prepared with sepiolite dispersed using a high-speed shear disperser.
Composite Films of Nanofibrillated Cellulose with Sepiolite: Effect of Preparation Strategy
Publication . Alves, Luis; Ramos, Ana; Rasteiro, Maria G.; Vitorino, Carla; Ferraz, Eduardo; Ferreira, Paulo J. T.; Puertas, Maria L.; Gamelas, José A. F.
Cellulose nanofibrils (CNFs) are nanomaterials with promising properties to be used in food packaging and printed electronics, thus being logical substitutes to petroleum-based polymers, specifically plastics. CNFs can be combined with other materials, such as clay minerals, to form composites, which are environmentally friendly materials, with acceptable costs and without compromising the final properties of the composite material. To produce composite films, two strategies can be used: solvent casting and filtration followed by hot pressing. The first approach is the simplest way to produce films, but the obtained films may present some limitations. In the present work, CNFs produced using enzymatic or TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidation pretreatments, followed by high-pressure homogenization, or only by mechanical treatment (homogenization), were used to produce films by both the available procedures. The films obtained by filtration + hot pressing presented higher tensile strength and Young’s modulus compared with those obtained by solvent casting. In general, a decrease in the values of these mechanical properties of the films and a decrease in elongation at break, with the addition of sepiolite, were also observed. However, for the TEMPO CNF-based films, an improvement in tensile strength could be observed for 10% of the sepiolite content. Furthermore, the time necessary to produce films was largely reduced by employing the filtration procedure. Finally, the water vapour barrier properties of the films obtained by filtration are comparable to the literature values of net CNF films. Thus, this technique demonstrates to be the most suitable to produce CNF-based composite films in a fast way and with improved mechanical properties and suitable gas barrier properties.
Composites of nanofibrillated cellulose with clay minerals: A review
Publication . Alves, L.; Ferraz, Eduardo; Gamelas, J. A. F.
Biopolymers-based composites are, in general, environmentally friendly materials, which can be obtained from renewable sources. Some of them can also present promising properties to be used in food packaging and electronic devices, being thus logical substitutes to petroleum-based polymers, specifically plastics. Cellulose nanofibrils (CNF) obtained by chemical/enzymatic pre-treatments followed by a mechanical treatment appear as a new suitable biomaterial. However, CNF are still quite expensive materials, due to the required chemicals/equipment/energy involved, and additionally, they present some limitations such as high hydrophilicity/high water vapour permeability. The combination of CNF with clay minerals, such as montmorillonite or kaolinite, as widely available geo-resources, represents an excellent way to reduce the amount of CNF used, enabling the production of valuable materials and reducing costs; and, at the same time it is possible to improve the characteristics of the formed materials, such as mechanical, gas barrier and fire retardancy properties, if appropriate conditions of preparation are used. Nevertheless, to obtain hybrid CNF/clay composites with superior properties it is necessary to ensure a good dispersion of the inorganic material in the CNF suspension and a good compatibility among the inorganic and organic components. To fulfil this goal, several strategies can be considered, including physical treatments of the suspensions, CNF and clay surface chemical modifications, and the use of a coupling agent. In this review article, the state-of-the-art on a new emerging generation of composites (films, foams or coatings) based on nanofibrillated cellulose and nanoclay, with focus on strategies for their preparation and most relevant achievements is critically reviewed, bearing in mind their potential application as substitutes for common plastics. A third component has been eventually added to these organic-inorganic hybrids, e.g., chitosan, carboxymethylcellulose, borate or epoxy resin, to enhance specific characteristics of the material. Some general background on the production of different types of CNF and their main properties is previously provided.
Tuning rheology and aggregation behaviour of TEMPO-oxidised cellulose nanofibrils aqueous suspensions by addition of different acids
Publication . Alves, L.; Ferraz, Eduardo; Lourenço, A. F.; Ferreira, P. J.; Rasteiro, M. G.; Gamelas, J. A. F.
The present work intends to study the variations in the rheological properties and aggregation behaviour of TEMPO-oxidised cellulose nanofibrils (CNF) aqueous suspensions, as a function of changes in concentration and systematic changes in the pH, by addition of acids with different anions. It was found that CNF suspensions form strong gels at mass fractions higher than 0.35 % and the gel point is ca. 0.18 %. On the other hand, aggregation is enhanced at acidic pH conditions due to lower charge repulsion among fibrils, leading to an increase of the suspension viscosity. However, distinct rheological behaviours were presented by CNF suspensions as different acids were applied. It was found that phosphate ions resulted in significant aggregation leading to formation of particles of large size and very strong gels, at pH 2.3; distinctly, the presence of acetate ions resulted in lower aggregation, lower particle size and weaker gels, at the same pH value.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
9471 - RIDTI
Funding Award Number
PTDC/QUI-OUT/31884/2017