Browsing by Author "Serro, Ana Paula"
Now showing 1 - 10 of 26
Results Per Page
Sort Options
- About the effect of eye blinking on drug release from pHEMA-based hydrogels: an in vitro studyPublication . Galante, Raquel; Paradiso, Patrizia; Moutinho, Maria Guilhermina; Fernandes, Ana Isabel; Mata, José; Matos, António; Colaço, Rogério; Saramago, Benilde; Serro, Ana Paula"The development of new ophthalmic drug delivery systems capable of increasing the residence time of drugs in the eye and improve its bioavailability relatively to eyedrops has been object of intense research in recent years. Several studies have shown that drug loaded therapeutic soft contact lenses (SCLs) constitute a promising approach, with several potential advantages as compared with collyria. The main objective of this work is to study the effect of repetitive load and friction cycles caused by the eye blinking, on the drug release from hydrogels used in SCLs which, as far as we know, was never investigated before. Two poly-2-hydroxyethylmethacrylate based hydrogels, pHEMA-T and pHEMA-UV, were used as model materials. Levofloxaxin was chosen as model drug. The hydrogels were fully characterized in what concerns structural and physicochemical properties. PHEMA-UV revealed some superficial porosity and a lower short range order than PHEMA-T. We observe that the load and friction cycles enhanced the drug release from pHEMAUV hydrogels. The application of a simple mathematical model, which takes into account the drug dilution caused by the tear flow, showed that the enhancement of the drug release caused by blinking on this hydrogel may be relevant in in vivo conditions. Conversely, the more sustained drug release from pHEMA-T is not affected by load and friction cycles. The conclusion is that, depending on the physicochemical and microstructural characteristics of the hydrogels, blinking is a factor that may affect the amount of drug delivered to the eye by SCLs and should thus be considered."
- About the sterilization of chitosan hydrogel nanoparticlesPublication . Galante, Raquel; Rediguieri, Carolina F.; Kikuchi, Irene Satiko; Vasquez, Pablo A. S.; Colaço, Rogério; Serro, Ana Paula; Pinto, Terezinha J. A.In the last years, nanostructured biomaterials have raised a great interest as platforms for delivery of drugs, genes, imaging agents and for tissue engineering applications. In particular, hydrogel nanoparticles (HNP) associate the distinctive features of hydrogels (high water uptake capacity, biocompatibility) with the advantages of being possible to tailor its physicochemical properties at nano-scale to increase solubility, immunocompatibility and cellular uptake. In order to be safe, HNP for biomedical applications, such as injectable or ophthalmic formulations, must be sterile. Literature is very scarce with respect to sterilization effects on nanostructured systems, and even more in what concerns HNP. This work aims to evaluate the effect and effectiveness of different sterilization methods on chitosan (CS) hydrogel nanoparticles. In addition to conventional methods (steam autoclave and gamma irradiation), a recent ozone-based method of sterilization was also tested. A model chitosan-tripolyphosphate (TPP) hydrogel nanoparticles (CS-HNP), with a broad spectrum of possible applications was produced and sterilized in the absence and in the presence of protective sugars (glucose and mannitol). Properties like size, zeta potential, absorbance, morphology, chemical structure and cytotoxicity were evaluated. It was found that the CS-HNP degrade by autoclaving and that sugars have no protective effect. Concerning gamma irradiation, the formation of agglomerates was observed, compromising the suspension stability. However, the nanoparticles resistance increases considerably in the presence of the sugars. Ozone sterilization did not lead to significant physical adverse effects, however, slight toxicity signs were observed, contrarily to gamma irradiation where no detectable changes on cells were found. Ozonation in the presence of sugars avoided cytotoxicity. Nevertheless, some chemical alterations were observed in the nanoparticles.
- Antimicrobial passive coatings for titanium dental implantsPublication . Oliveira, Miguel Mendes de; Serro, Ana Paula; Colaço, Rogério
- Asymmetry in drug permeability through the corneaPublication . Toffoletto, Nadia; Chauhan, Anuj; Alvarez-Lorenzo, Carmen; Saramago, Benilde; Serro, Ana PaulaThe permeability through the cornea determines the ability of a drug or any topically applied compound to cross the tissue and reach the intraocular area. Most of the permeability values found in the literature are obtained considering topical drug formulations, and therefore, refer to the drug permeability inward the eye. However, due to the asymmetry of the corneal tissue, outward drug permeability constitutes a more meaningful parameter when dealing with intraocular drug-delivery systems (i.e., drug-loaded intraocular lenses, intraocular implants or injections). Herein, the permeability coefficients of two commonly administered anti-inflammatory drugs (i.e., bromfenac sodium and dexamethasone sodium) were determined ex vivo using Franz diffusion cells and porcine corneas in both inward and outward configurations. A significantly higher drug accumulation in the cornea was detected in the outward direction, which is consistent with the different characteristics of the corneal layers. Coherently, a higher permeability coefficient was obtained for bromfenac sodium in the outward direction, but no differences were detected for dexamethasone sodium in the two directions. Drug accumulation in the cornea can prolong the therapeutic effect of intraocular drug-release systems.
- Book of Abstracts of 11th Iberian Conference on TribologyPublication . Serro, Ana Paula; Branco, Ana Catarina Branco; Carneiro, Carla; Silva, Diana; Guedes, M.; Figueiredo-Pina, Célio
- Chitosan nanogels for biomedical applications: choosing a suitable sterilization methodPublication . Galante, Raquel; Satiko, Irene; Bou-Chacra, Nádia; Colaço, Rogério; Serro, Ana Paula; Pinto, Terezinha J. A.
- Chitosan/alginate based multilayers to control drug release fromophthalmic lensPublication . Silva, Diana; Pinto, Luís F. V.; Bozukova, Dimitriya; Santos, Luís F.; Serro, Ana Paula; Saramago, BenildeIn this study we investigated the possibility of using layer-by-layer deposition, based in natural polymers (chitosan and alginate), to control the release of different ophthalmic drugs from three types of lens materials: a silicone-based hydrogel recently proposed by our group as drug releasing soft contact lens (SCL) material and two commercially available materials: CI26Y for intraocular lens (IOLs) and Definitive 50 for SCLs. The optimised coating, consisting in one double layer of (alginate – CaCl2)/(chitosan + glyoxal) topped with a final alginate-CaCl2 layer to avoid chitosan degradation by tear fluid proteins, proved to have excellent features to control the release of the anti-inflammatory, diclofenac, while keeping or improving the physical properties of the lenses. The coating leads to a controlled release of diclofenac from SCL and IOL materials for, at least, one week. Due to its high hydrophilicity (water contact angle ≈ 0) and biocompatibility, it should avoid the use of further surface treatments to enhance the useŕs comfort. However, the barrier effect of this coating is specific for diclofenac, giving evidence to the need of optimizing the chemical composition of the layers in view of the desired drug.
- Contact lenses as drug controlled release systems: a narrative reviewPublication . Filipe, Helena Prior; Henriques, José; Reis, Pedro; Silva, Pedro Cruz; Quadrado, Maria João; Serro, Ana PaulaTopically applied therapy is the most common way to treat ocular diseases, however given the anatomical and physiological constraints of the eye, frequent dosing is required with possible repercussions in terms of patient compliance. Beyond refractive error correction, contact lenses (CLs) have, in the last few decades emerged as a potential ophthalmic drug controlled release system (DCRS). Extensive research is underway to understand how to best modify CLs to increase residence time and bioavailability of drugs within therapeutic levels on the ocular surface.These devices may simultaneously correct ametropia and have a role in managing ophthalmic disorders that can hinder CL wear such as dry eye, glaucoma, ocular allergy and cornea infection and injury. In this narrative review the authors explain how the ocular surface structures determine drug diffusion in the eye and summarize the strategies to enhance drug residence time and bioavailability. They synthesize findings and clinical applications of drug soaked CLs as DCRS combined with delivery diffusion barriers, incorporation of functional monomers, ion related controlled release, molecular imprinting, nanoparticles and layering. The authors draw conclusions about the impact of these novel ophthalmic agents delivery systems in improving drug transport in the target tissue and patient compliance, in reducing systemic absorption and undesired side effects, and discuss future perspectives.
- Controlled drug delivery from ophthalmic lensesPublication . Topete, Ana; Oliveira, Andreia; Pimenta, Andreia; Silva, Diana; Carrilho, Magda; Paradiso, Patrizia; Kumar, Prashneel; Galante, Raquel; Mata, José; Colaço, Rogério; Saramago, Benilde; Serro, Ana Paula
- Controlled release of antibiotics from vitamin E–loaded silicone-hydrogel contact lensesPublication . Paradiso, Patrizia; Serro, Ana Paula; Saramago, Benilde; Colaço, Rogério; Chauhan, AnujSymptoms of bacterial and fungal keratitis are typically treated through the frequent application of antibiotic and antifungal eye drops. The high frequency of half hourly or hourly eye drop administration required to treat these indications is tedious and could reduce compliance. Here, we combine in vitro experiments with a mathematical model to develop therapeutic soft contact lenses to cure keratitis by extended release of suitable drugs. We specifically focus on increasing the release duration of levofloxacin and chlorhexidine from 1-DAY ACUVUE® TrueEye™ and ACUVUE OASYS® contact lenses by incorporating vitamin E diffusion barriers. Results show that 20% of vitamin E loading in the contact lens increases the release duration of levofloxacin to 100 h and 50 h from 1-DAY ACUVUE® TrueEye™ and ACUVUE OASYS®, respectively, which is a 3- and 6-fold increase, respectively, for the 2 lenses. For chlorhexidine, the increase is 2.5- and 10-fold, for the TrueEye™ and OASYS®, respectively, to 130 h and 170 h. The mass of drug loaded in the lenses can be controlled to achieve a daily release comparable to the commonly prescribed eye drop therapy. The vitamin E–loaded lenses retain all critical properties for in vivo use.
- «
- 1 (current)
- 2
- 3
- »