Repository logo
 
Publication

Best aproximation pair of two skew lines via an Anderson-Duffin formula

dc.contributor.authorVicente, M. A. Facas
dc.contributor.authorCosta, C.
dc.contributor.authorM. L. Martins, Fernando
dc.contributor.authorBeites, Patrícia
dc.contributor.authorVitória, José
dc.date.accessioned2023-09-27T16:23:01Z
dc.date.available2023-09-27T16:23:01Z
dc.date.issued2018
dc.description.abstractThis is a paper on geometry in the usual real Euclidean space. We treat the distance between two skew lines, by using a very beautiful instance of the parallel sum of two matrices. We display the two points where the shortest distance between two skew lines is achieved. This paper offers the reader a great amount of facts aiming to rise awareness about delicate questions - when dealing with infinite dimensional spaces: on closed sum of subspaces; on the non-linearity of the projector operator; and on the necessity of the sum of (closed) subspaces to be closed in order to guarantee the existence of the Moore-Penrose generalized inverse of the sum of two projectors. In making use of approximation theory results, this text is sprinkled with observations regarding concepts stemming from linear algebra to functional analysis to topology.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doihttp://dx.doi.org/10.17654/MS109010089pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.26/46815
dc.language.isoengpt_PT
dc.publisherPushpa Publishing Housept_PT
dc.titleBest aproximation pair of two skew lines via an Anderson-Duffin formulapt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceAllahabadpt_PT
oaire.citation.endPage104pt_PT
oaire.citation.startPage89pt_PT
oaire.citation.titleFar East Journal of Mathematical Sciencespt_PT
oaire.citation.volume109pt_PT
person.familyNameMartins
person.givenNameFernando Manuel Lourenço
person.identifier0000000070715256
person.identifier.ciencia-id8512-5BB4-6DFD
person.identifier.orcid0000-0002-1812-2300
person.identifier.ridAAK-6934-2020
person.identifier.scopus-author-id57217191490
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication805fc13a-0e76-4f11-9d4c-0dc177f8145c
relation.isAuthorOfPublication.latestForDiscovery805fc13a-0e76-4f11-9d4c-0dc177f8145c

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MS109010089.pdf
Size:
605.04 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Item-specific license agreed upon to submission
Description: