| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 2.5 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Este trabalho resulta da atribuição de uma bolsa de investigação no âmbito do projeto
3DGelComp que consistiu na caracterização de um hidrogel tendo em conta o seu
comportamento mecânico, de forma a observar qual seria o melhor modelo reológico que o
caracterizaria, com a aplicabilidade em utilizações medicinais ao nível da regeneração de
tecidos.
Neste trabalho procurou-se encontrar o modelo reológico que melhor modela o
comportamento viscoelástico do material Zovirax em solicitações de fluência e de recuperação.
Foram ensaiadas experimentalmente 3 diferentes formulações de Zovirax em testes de
fluência e recuperação. Foram considerados diferentes modelos reológicos para modelar o
comportamento viscoelástico do material e escolhida a melhor combinação de modelos que,
separadamente nas fases de fluência e de recuperação melhor se adaptam ao comportamento
real do material. Foi assim determinado um modelo misto que, comparativamente com a
utilização de um modelo único usado para modelar a fluência e a recuperação do material,
melhora a previsão numérica do comportamento mecânico do Zovirax em solicitações de fluência
e de recuperação, que representam para a 1ª formulação uma melhoria de 53% relativamente
ao uso de um modelo único. Para a 2ª formulação uma melhoria de 74,5% e para a 3ª formulação
uma melhoria de 75,4%.
This work results from the granting of a research grant within the scope of the 3DGelComp project, which consists of the characterization of a hydrogel taking into account its mechanical behavior, in order to observe which would be the best rheological model that would characterize it, with applicability in medicinal uses. at the level of tissue protection. In this work, we sought to find the rheological model that best modeled the viscoelastic behavior of the Zovirax material in creep absorption and recovery. Three different formulations of Zovirax were experimentally tested in fluency and recovery tests. Different rheological models were considered to model the viscoelastic behavior of the material and the best combination of models was chosen that, separately in the creep and recovery phases, better adapt to the real behavior of the material. A mixed model was thus determined which, compared to the use of a single model used to model creep and recovery of the material, improved the numerical prediction of the mechanical behavior of Zovirax in creep transfer and recovery, which represents for the 1st formulation a 53% improvement over using a single model. For the 2nd formulation an improvement of 74.5% and for the 3rd formulation an improvement of 75.4%.
This work results from the granting of a research grant within the scope of the 3DGelComp project, which consists of the characterization of a hydrogel taking into account its mechanical behavior, in order to observe which would be the best rheological model that would characterize it, with applicability in medicinal uses. at the level of tissue protection. In this work, we sought to find the rheological model that best modeled the viscoelastic behavior of the Zovirax material in creep absorption and recovery. Three different formulations of Zovirax were experimentally tested in fluency and recovery tests. Different rheological models were considered to model the viscoelastic behavior of the material and the best combination of models was chosen that, separately in the creep and recovery phases, better adapt to the real behavior of the material. A mixed model was thus determined which, compared to the use of a single model used to model creep and recovery of the material, improved the numerical prediction of the mechanical behavior of Zovirax in creep transfer and recovery, which represents for the 1st formulation a 53% improvement over using a single model. For the 2nd formulation an improvement of 74.5% and for the 3rd formulation an improvement of 75.4%.
Description
Keywords
Viscoelástico Modelos Reológicos Fluência Recuperação Viscoelastic Rheological Models Creep Recovery
