Name: | Description: | Size: | Format: | |
---|---|---|---|---|
1.41 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A osteoartrite é uma doença que afeta as articulações, resultando na degeneração da
cartilagem. O propósito deste estudo é desenvolver um hidrogel à base de álcool polivinílico
que possa ser utilizado para reparação das zonas danificadas da cartilagem.
Para tal, foram produzidos hidrogéis por “cast-drying” e “freeze-thawing” contendo fibras de
conteira e/ou ácido cítrico. Os hidrogéis obtidos foram inicialmente caracterizados em termos
da sua quantidade de água, intumescimento e comportamento à compressão. Em seguida,
para cada processo de fabrico, foi selecionado o hidrogel que apresentou o módulo de
elasticidade à compressão mais elevado. Por fim, os hidrogéis selecionados foram
caracterizados em relação à morfologia e ao seu comportamento à tração, reológico e
tribológico.
Os resultados deste estudo revelam que as estruturas obtidas têm propriedades
tribomecânicas promissoras para substituir a cartilagem, em especial o hidrogel com ácido
cítrico, que demonstrou propriedades superiores comparativamente aos hidrogéis com fibras
de conteira. Com efeito, este material evidenciou maior resistência à tração, e os módulos de
elasticidade e energias dissipativas foram significativamente mais elevados, devido à menor
porosidade, e estrutura mais compacta, conforme confirmado pela análise morfológica dos
materiais. Quanto ao coeficiente de atrito, os hidrogéis com fibras de conteira conduziram a
valores mais baixos, fundamentais para proporcionar uma superfície de atrito reduzida entre
as superfícies articulares na cartilagem.
Este trabalho permite concluir que a incorporação de ácido cítrico e de fibras de conteira
constituem abordagens potencialmente interessantes para o desenvolvimento de hidrogéis
destinados à substituição da cartilagem em pacientes com osteoartrite, oferecendo
propriedades mecânicas desejáveis.
Osteoarthritis is a disease that affects the joints, resulting in the degeneration of cartilage. The purpose of this study is to develop a polyvinyl alcohol-based hydrogel that can be used for the repair of damaged cartilage zones. For this, hydrogels were produced through cast-drying and freeze-thawing processes containing kahili ginger fibers and/or citric acid. The obtained hydrogels were initially characterized in terms of their water content, swelling, and compression behavior. Subsequently, for each manufacturing process, the hydrogel with the highest compression modulus was selected. Finally, the selected hydrogels were characterized in terms of morphology and their tensile, rheological, and tribological behavior. The results of this study reveal that the obtained structures have promising tribomechanical properties for cartilage replacement, especially the hydrogel with citric acid, which demonstrated superior properties compared to hydrogels with kahili ginger fibers. Indeed, this material showed higher tensile strength, and the compression modulus and dissipative energies were significantly higher due to lower porosity and a more compact structure, as confirmed by the morphological analysis of the materials. Regarding the friction coefficient, hydrogels with kahili ginger fibers led to lower values, essential for providing a reduced friction surface between joint surfaces in cartilage. This work allows us to conclude that the incorporation of citric acid and kahili ginger fibers constitutes potentially interesting approaches for the development of hydrogels intended for cartilage replacement in patients with osteoarthritis, offering desirable mechanical properties.
Osteoarthritis is a disease that affects the joints, resulting in the degeneration of cartilage. The purpose of this study is to develop a polyvinyl alcohol-based hydrogel that can be used for the repair of damaged cartilage zones. For this, hydrogels were produced through cast-drying and freeze-thawing processes containing kahili ginger fibers and/or citric acid. The obtained hydrogels were initially characterized in terms of their water content, swelling, and compression behavior. Subsequently, for each manufacturing process, the hydrogel with the highest compression modulus was selected. Finally, the selected hydrogels were characterized in terms of morphology and their tensile, rheological, and tribological behavior. The results of this study reveal that the obtained structures have promising tribomechanical properties for cartilage replacement, especially the hydrogel with citric acid, which demonstrated superior properties compared to hydrogels with kahili ginger fibers. Indeed, this material showed higher tensile strength, and the compression modulus and dissipative energies were significantly higher due to lower porosity and a more compact structure, as confirmed by the morphological analysis of the materials. Regarding the friction coefficient, hydrogels with kahili ginger fibers led to lower values, essential for providing a reduced friction surface between joint surfaces in cartilage. This work allows us to conclude that the incorporation of citric acid and kahili ginger fibers constitutes potentially interesting approaches for the development of hydrogels intended for cartilage replacement in patients with osteoarthritis, offering desirable mechanical properties.
Description
Keywords
Cartilagem Hidrogel Álcool polivinílico Ácido cítrico Fibras de conteira Cartilage Hydrogel Polyvinyl alcohol Citric acid Kahili ginger fibers