Name: | Description: | Size: | Format: | |
---|---|---|---|---|
4.13 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A Medicina Regenerativa tem sido considerada na odontologia como uma área em progresso, focando-se na elaboração de terapias de substituição de dentes projetadas por bioengenharia, com potencial para fornecer a função e a capacidade de resposta sensorial dos dentes naturais. Entender o processo de mineralização do dente, tanto durante a fase pré-eruptiva como na fase pós-eruptiva, revela-se extremamente importante no desenvolvimento de tratamentos para doenças relacionadas com a mineralização. Durante a génese dentária, a formação mineral ganha expressão durante o desenvolvimento do esmalte e da dentina. O processo de mineralização envolvido resulta de um conjunto de interações bioquímicas, coordenadas por moléculas sinalizadoras, as quais estimulam a síntese e a libertação de proteínas e efluxo de iões para o espaço extracelular. Estas proteínas e iões, os quais incluem enzimas, fatores de transcrição, fatores de crescimento e componentes da matriz extracelular, participam conjuntamente no processo de formação e regulação mineral, desde a nucleação ao crescimento do cristal. O conhecimento das vias de sinalização que induzem a
expressão de vários sinais envolvidos na formação do esmalte e da dentina, proporcionam novas perspetivas direcionadas a identificação de interações durante a fase mineral e cristalina da apatite biológica.
Durante a amelogénese e a dentinogénese, os ameloblastos e os odontoblastos respetivamente, sofrem interações possibilitando a sua diferenciação celular e polarização. Consequentemente, ativam a síntese proteica, libertando proteínas e minerais para a região extracelular, onde ocorre a mineralização. A apesar de serem processos específicos de cada célula, interagem entre si através de sinais recíprocos permitindo a formação e crescimento dos cristais de hidroxiapatite. Após a formação dos ameloblastos, estes sofrem apoptose o que constitui um dos maiores desafios da sua regeneração. Por sua vez, a dentina apresenta uma relação estreita com a polpa, onde os odontoblastos permanecem junto da região vascularizada permitindo a regeneração e reparação da mesma ao longo do seu tempo de vida. As estratégias terapêuticas atuais na dentina, focam-se principalmente na regeneração do complexo dentino-pulpar, com o intuito de aprimorar os
materiais de capeamento pulpar, através de uma matriz orgânica de colagénio. No esmalte, as abordagens compreendem a reprodução da montagem dos cristais de HAp através do uso de proteínas. O objetivo é recriar o ambiente espaço-temporal da deposição e formação da estrutura mineral. A presente revisão, retrata o estado da arte do processo de mineralização dos tecidos dentários, fornecendo novos horizontes e oportunidades futuras para a sua regeneração e reparação.
Assim, torna-se primordial perceber quais os componentes que atuam durante este processo de forma a serem aplicados em novas abordagens preventivas, novos materiais biomiméticos, ou mesmo novas estratégias terapêuticas de doenças que afetam o desenvolvimento do esmalte e da dentina.
Regenerative Medicine has been considered in dentistry as an advancing area, focusing on the development of bioengineered tooth replacement therapies with the potential to provide the function and sensory responsiveness of natural teeth. Understanding the tooth mineralization process, both during the pre-eruptive and post-eruptive phases, proves to be extremely important in the development of treatments for diseases related to mineralization. During dental genesis, mineral formation gains expression during enamel and dentin development. The mineralization process involved results from a set of biochemical interactions, coordinated by signaling molecules, which stimulate the synthesis and release of proteins and ion efflux to the extracellular space. These proteins and ions, which include enzymes, transcription factors, growth factors and extracellular matrix components, jointly participate in the mineral formation and regulation process, from nucleation to crystal growth. The knowledge of the signaling pathways that induce the expression of various signals involved in the formation of enamel and dentin, provides new perspectives aimed at identifying interactions during the mineral and crystalline phase of biological apatite. During amelogenesis and dentinogenesis, ameloblasts and odontoblasts, respectively, undergo interactions enabling their cell differentiation and polarization. Consequently, they activate protein synthesis, releasing proteins and minerals to the extracellular region, where mineralization occurs. Despite being processes specific to each cell, they interact with each other through reciprocal signals, allowing the formation and growth of hydroxyapatite crystals. After the formation of ameloblasts, they undergo apoptosis, which is one of the biggest challenges in their regeneration. In turn, dentin has a close relationship with the pulp, where odontoblasts remain close to the vascularized region, allowing its regeneration and repair throughout its lifetime. Current therapeutic strategies in dentin focus mainly on the regeneration of the pulpdentin complex, with the aim of improving pulp capping materials through an organic collagen matrix. In enamel, approaches include reproducing the assembly of HAp crystals through the use of proteins. The objective is to recreate the space-time environment of the deposition and formation of the mineral structure. This review represents the state of the art of the mineralization process of dental tissues, providing new horizons and future opportunities for its regeneration and repair. Thus, it is essential to understand which components act during this process in order to be applied in new preventive approaches, new biomimetic materials, or even new therapeutic strategies for diseases that affect the development of enamel and dentin.
Regenerative Medicine has been considered in dentistry as an advancing area, focusing on the development of bioengineered tooth replacement therapies with the potential to provide the function and sensory responsiveness of natural teeth. Understanding the tooth mineralization process, both during the pre-eruptive and post-eruptive phases, proves to be extremely important in the development of treatments for diseases related to mineralization. During dental genesis, mineral formation gains expression during enamel and dentin development. The mineralization process involved results from a set of biochemical interactions, coordinated by signaling molecules, which stimulate the synthesis and release of proteins and ion efflux to the extracellular space. These proteins and ions, which include enzymes, transcription factors, growth factors and extracellular matrix components, jointly participate in the mineral formation and regulation process, from nucleation to crystal growth. The knowledge of the signaling pathways that induce the expression of various signals involved in the formation of enamel and dentin, provides new perspectives aimed at identifying interactions during the mineral and crystalline phase of biological apatite. During amelogenesis and dentinogenesis, ameloblasts and odontoblasts, respectively, undergo interactions enabling their cell differentiation and polarization. Consequently, they activate protein synthesis, releasing proteins and minerals to the extracellular region, where mineralization occurs. Despite being processes specific to each cell, they interact with each other through reciprocal signals, allowing the formation and growth of hydroxyapatite crystals. After the formation of ameloblasts, they undergo apoptosis, which is one of the biggest challenges in their regeneration. In turn, dentin has a close relationship with the pulp, where odontoblasts remain close to the vascularized region, allowing its regeneration and repair throughout its lifetime. Current therapeutic strategies in dentin focus mainly on the regeneration of the pulpdentin complex, with the aim of improving pulp capping materials through an organic collagen matrix. In enamel, approaches include reproducing the assembly of HAp crystals through the use of proteins. The objective is to recreate the space-time environment of the deposition and formation of the mineral structure. This review represents the state of the art of the mineralization process of dental tissues, providing new horizons and future opportunities for its regeneration and repair. Thus, it is essential to understand which components act during this process in order to be applied in new preventive approaches, new biomimetic materials, or even new therapeutic strategies for diseases that affect the development of enamel and dentin.
Description
Dissertação para obtenção do grau de Mestre no Instituto Universitário Egas Moniz
Keywords
Mineralização Esmalte Dentina Amelogénese Dentinogénese Matriz extracelular Hidroxiapatite