| Nome: | Descrição: | Tamanho: | Formato: | |
|---|---|---|---|---|
| 6.91 MB | Adobe PDF |
Autores
Orientador(es)
Resumo(s)
Numa época em que se conseguiu reduzir os índices de pobreza, guerras e doenças, o tema da longevidade do ser humano está em destaque com o constante desenvolvimento ao nível da medicina, bioengenharia e sistemas de monitorização dos indicadores de saúde. Foi com base nesta temática que surgiu a ideia de perceber como tem sido a evolução da esperança média de vida do ser humano a nível mundial com o objetivo de perceber quais os fatores que a influenciam. Nesse sentido irá recorrer-se aos dados disponíveis nas seguintes plataformas:
https://ourworldindata.org/
https://databank.worldbank.org/
https://www.pordata.pt/pt
https://www.mortality.org/
Com base na análise dos dados mais relevantes para este trabalho será feito o respetivo tratamento e preparação para uma posterior análise a partir dos modelos de aprendizagem supervisionada. Irá ser feita uma primeira análise para perceber como a esperança média de vida tem evoluído até aos dias de hoje, como se encontra atualmente e qual a tendência para o futuro. Também se pretende criar um modelo de aprendizagem supervisionada que nos permita prever a Esperança média de vida com base em vários indicadores independentes. Para verificar como estão os países com o valor mais alto da Esperança média de vida em 2023 em cada uma das categorias analisadas, serão criados gráficos que permitam tirar conclusões sobre quais os indicadores comuns nesses países. Complementarmente far-se-á uma análise comparativa entre os dados relativos ao nosso país por áreas geográficas. Procurar-se-á também expor os resultados de uma forma gráfica simples, mas clara para uma interpretação visual mais eficaz. O projeto será desenvolvido de forma a aplicar o máximo dos conhecimentos adquiridos durante o 1º ano do Mestrado de Ciência de Dados para Empresas por forma a desenvolver e aplicar esses conhecimentos da melhor forma. No final será feita uma análise a todos os resultados obtidos e serão tiradas as conclusões possíveis com esses mesmos resultados.
At a time when poverty, wars, and diseases have been significantly reduced, the topic of human longevity is in the spotlight, thanks to continual developments in medicine, bioengineering, and systems for monitoring health indicators. It was against this backdrop that the idea emerged to understand how human life expectancy has evolved globally, with the aim of identifying the factors that influence it. To this end, data available from the following platforms will be used: https://ourworldindata.org/ https://databank.worldbank.org/ https://www.pordata.pt/pt https://www.mortality.org/ Based on the analysis of the most relevant data for this project, the data will be processed and prepared for subsequent analysis using supervised learning models. An initial analysis will be conducted to understand how life expectancy has evolved up to the present day, its current state, and the trend for the future. The project also aims to develop a supervised learning model that allows us to predict average life expectancy based on various independent indicators. To examine the countries with the highest life expectancy in 2023 across all analysed categories, graphs will be created to help identify common indicators among these countries. Additionally, a comparative analysis will be carried out between the data related to Portugal, broken down by geographical areas. Efforts will also be made to present the results in a simple yet clear graphical format for more effective visual interpretation. The project will be developed to apply as much of the knowledge acquired during the first year of the Master in Data Science for Business as possible, in order to develop and apply these skills in the best possible way. Finally, an analysis of all the results obtained will be conducted, and conclusions will be drawn accordingly.
At a time when poverty, wars, and diseases have been significantly reduced, the topic of human longevity is in the spotlight, thanks to continual developments in medicine, bioengineering, and systems for monitoring health indicators. It was against this backdrop that the idea emerged to understand how human life expectancy has evolved globally, with the aim of identifying the factors that influence it. To this end, data available from the following platforms will be used: https://ourworldindata.org/ https://databank.worldbank.org/ https://www.pordata.pt/pt https://www.mortality.org/ Based on the analysis of the most relevant data for this project, the data will be processed and prepared for subsequent analysis using supervised learning models. An initial analysis will be conducted to understand how life expectancy has evolved up to the present day, its current state, and the trend for the future. The project also aims to develop a supervised learning model that allows us to predict average life expectancy based on various independent indicators. To examine the countries with the highest life expectancy in 2023 across all analysed categories, graphs will be created to help identify common indicators among these countries. Additionally, a comparative analysis will be carried out between the data related to Portugal, broken down by geographical areas. Efforts will also be made to present the results in a simple yet clear graphical format for more effective visual interpretation. The project will be developed to apply as much of the knowledge acquired during the first year of the Master in Data Science for Business as possible, in order to develop and apply these skills in the best possible way. Finally, an analysis of all the results obtained will be conducted, and conclusions will be drawn accordingly.
Descrição
Palavras-chave
Esperança média de vida Aprendizagem Supervisionada Saúde e bem-estar Geo-analítica Life Expectancy Supervised Machine Learning Health and Well-being Geo-analytics
