Repository logo
 
Publication

Improving Music Emotion Recognition by Leveraging Handcrafted and Learned Features

dc.contributor.authorLima Louro, Pedro Miguel
dc.contributor.authorRedinho, Hugo
dc.contributor.authorMalheiro, Ricardo
dc.contributor.authorPanda, Renato
dc.contributor.authorPinto de Carvalho e Paiva, Rui Pedro
dc.date.accessioned2025-10-20T13:26:31Z
dc.date.available2025-10-20T13:26:31Z
dc.date.issued2024-12-09
dc.description.abstractMusic Emotion Recognition was dominated by classical machine learning, which relies on traditional classifiers and feature engineering (FE). Recently, deep learning approaches have been explored, aiming to remove the need for handcrafted features by automatic feature learning (FL), albeit at the expense of requiring large volumes of data to fully exploit their capabilities. A hybrid approach fusing information from handcrafted and learned features was previously proposed, outperforming separate FE and FL approaches on the 4QAED dataset (900 audio clips). The results suggested that, in smaller datasets, FE and FL could complement each other rather than act as competitors. In the present study, these experiments are extended to the larger MERGE dataset (3554 audio clips) to analyze the impact of the significant increase in data. The best obtained results, 77.62% F1-score, continue to surpass the standalone FE and FL paradigms, reinforcing the potential of hybrid approacheseng
dc.identifier.source-work-idcv-prod-id-4810274
dc.identifier.urihttp://hdl.handle.net/10400.26/59279
dc.language.isoeng
dc.peerreviewedyes
dc.relationMusic Emotion Recognition - Next Generation
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleImproving Music Emotion Recognition by Leveraging Handcrafted and Learned Featureseng
dc.typeconference paper
dcterms.referenceshttps://zenodo.org/records/13939205
dspace.entity.typePublication
oaire.awardTitleMusic Emotion Recognition - Next Generation
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FCCI-COM%2F3171%2F2021/PT
oaire.citation.conferenceDate2024-12-09
oaire.citation.conferencePlaceRio de Janeiro, Brazil
oaire.citation.title1st Latin American Music Information Retrieval Workshop (LAMIR)
oaire.fundingStream3599-PPCDT
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameLima Louro
person.familyNameRedinho
person.familyNameMalheiro
person.familyNamePanda
person.familyNamePinto de Carvalho e Paiva
person.givenNamePedro Miguel
person.givenNameHugo
person.givenNameRicardo
person.givenNameRenato
person.givenNameRui Pedro
person.identifierWT5afVUAAAAJ
person.identifier.ciencia-idC315-8AA7-2C25
person.identifier.ciencia-id4517-42EE-8B4D
person.identifier.ciencia-idB81A-CB99-A4DF
person.identifier.ciencia-id661A-31CC-8D19
person.identifier.ciencia-idAA16-002F-5AE3
person.identifier.orcid0000-0003-3201-6990
person.identifier.orcid0009-0004-1547-2251
person.identifier.orcid0000-0002-3010-2732
person.identifier.orcid0000-0003-2539-5590
person.identifier.orcid0000-0003-3215-3960
person.identifier.ridL-9369-2017
person.identifier.scopus-author-id55354413900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication953b69db-f6a0-4a54-8618-93a912df6df6
relation.isAuthorOfPublication90f8aa11-754d-424a-a877-891f5dc386ab
relation.isAuthorOfPublicationd38dd344-0942-4fcb-b740-a4713fb170e7
relation.isAuthorOfPublication9cd470af-3968-45cc-ad6f-3b59e00ae823
relation.isAuthorOfPublication238ee6f8-61cd-49b4-9392-9e7763fd35f3
relation.isAuthorOfPublication.latestForDiscovery953b69db-f6a0-4a54-8618-93a912df6df6
relation.isProjectOfPublication32dd2667-ca4e-430b-a130-687ba6eee2e9
relation.isProjectOfPublication.latestForDiscovery32dd2667-ca4e-430b-a130-687ba6eee2e9

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LAMIR_2024_Louro.pdf
Size:
409.17 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Item-specific license agreed upon to submission
Description: