Repository logo
 
Publication

BEE-MER: Bimodal Embeddings Ensemble for Music Emotion Recognition

dc.contributor.authorLima Louro, Pedro Miguel
dc.contributor.authorRibeiro, Tiago F. R.
dc.contributor.authorMalheiro, Ricardo
dc.contributor.authorPanda, Renato
dc.contributor.authorPinto de Carvalho e Paiva, Rui Pedro
dc.date.accessioned2025-10-20T13:22:52Z
dc.date.available2025-10-20T13:22:52Z
dc.date.issued2025-07-07
dc.description.abstractStatic music emotion recognition systems typically focus on audio for classification, although some research has explored the potential of analyzing lyrics as well. Both approaches face challenges when it comes to accurately discerning emotions that have similar energy but differing valence, and vice versa, depending on the modality used. Previous studies have introduced bimodal audio-lyrics systems that outperform single-modality solutions by combining information from standalone systems and conducting joint classification. In this study, we propose and compare two bimodal approaches: one strictly based on embedding models (audio and word embeddings) and another one following a standard spectrogram-based deep learning method for the audio part. Additionally, we explore various information fusion strategies to leverage both modalities effectively. The main conclusions of this work are the following: i) the two approaches show comparable overall classification performance; ii) the embedding-only approach leads to a higher confusion between quadrants 3 and 4 of Russell’s circumplex model; iii) and this approach requires significantly less computational cost for training. We discuss the insights gained from the approaches we experimented with and highlight promising avenues for future research.eng
dc.identifier.source-work-idcv-prod-id-4810273
dc.identifier.urihttp://hdl.handle.net/10400.26/59278
dc.language.isoeng
dc.peerreviewedyes
dc.publisher7
dc.relationMusic Emotion Recognition - Next Generation
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleBEE-MER: Bimodal Embeddings Ensemble for Music Emotion Recognitioneng
dc.typeconference paper
dcterms.referenceshttps://zenodo.org/records/13939205
dcterms.referenceshttps://arxiv.org/abs/2407.06060
dspace.entity.typePublication
oaire.awardTitleMusic Emotion Recognition - Next Generation
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FCCI-COM%2F3171%2F2021/PT
oaire.citation.conferenceDate2025-07-07
oaire.citation.conferencePlaceGraz, Austria
oaire.citation.title22nd Sound and Music Computing Conference – SMC 2025
oaire.fundingStream3599-PPCDT
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aa
person.familyNameLima Louro
person.familyNameMalheiro
person.familyNamePanda
person.familyNamePinto de Carvalho e Paiva
person.givenNamePedro Miguel
person.givenNameRicardo
person.givenNameRenato
person.givenNameRui Pedro
person.identifierWT5afVUAAAAJ
person.identifier.ciencia-idC315-8AA7-2C25
person.identifier.ciencia-idB81A-CB99-A4DF
person.identifier.ciencia-id661A-31CC-8D19
person.identifier.ciencia-idAA16-002F-5AE3
person.identifier.orcid0000-0003-3201-6990
person.identifier.orcid0000-0002-3010-2732
person.identifier.orcid0000-0003-2539-5590
person.identifier.orcid0000-0003-3215-3960
person.identifier.ridL-9369-2017
person.identifier.scopus-author-id55354413900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication953b69db-f6a0-4a54-8618-93a912df6df6
relation.isAuthorOfPublicationd38dd344-0942-4fcb-b740-a4713fb170e7
relation.isAuthorOfPublication9cd470af-3968-45cc-ad6f-3b59e00ae823
relation.isAuthorOfPublication238ee6f8-61cd-49b4-9392-9e7763fd35f3
relation.isAuthorOfPublication.latestForDiscovery953b69db-f6a0-4a54-8618-93a912df6df6
relation.isProjectOfPublication32dd2667-ca4e-430b-a130-687ba6eee2e9
relation.isProjectOfPublication.latestForDiscovery32dd2667-ca4e-430b-a130-687ba6eee2e9

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SMC_2025_Louro.pdf
Size:
203.61 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Item-specific license agreed upon to submission
Description: