| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 3.36 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A maioria dos processos de impressão 3D, incluindo o FFF, envolve a transferência de calor para a peça que está a ser construída, provocando variações dimensionais, geométricas e tensões residuais. Pretende-se com esta dissertação estudar o empeno inerente da produção de peças funcionais impressas por FFF, utilizando um software de simulação numérica, Digimat-AMTM, a fim de rever esses defeitos e proceder à correção nas fases antecedentes à produção. Com foco em aumentar a precisão geométrica das peças impressas em 3D por FFF em materiais poliméricos de alta resistência. Os ensaios realizados em ABS e Nylon com espessuras de camadas de 0,1/0,125/0,15/0,2mm e preenchimentos de 30/50/100% demonstram que existe uma relação entre estes parâmetros e os níveis de empeno na peça impressa.
Most 3D printing processes, including FFF, involve transferring heat to the part being built, causing dimensional, geometric variations and residual stresses. This dissertation intends to study the inherent commitment of the production of functional parts printed by FFF, using a numerical process simulation software, Digimat-AM TM, in order to correct these defects in the phases prior to production. The aim of this study is to increase the geometric precision of 3D printed parts by FFF in highly resistant polymeric materials. Tests carried out on ABS and Nylon with layer thicknesses of 0.1 / 0.125 / 0.15 / 0.2mm and fillings of 30/50/100% demonstrate that there is a relationship between these parameters and the levels of warping in the printed part.
Most 3D printing processes, including FFF, involve transferring heat to the part being built, causing dimensional, geometric variations and residual stresses. This dissertation intends to study the inherent commitment of the production of functional parts printed by FFF, using a numerical process simulation software, Digimat-AM TM, in order to correct these defects in the phases prior to production. The aim of this study is to increase the geometric precision of 3D printed parts by FFF in highly resistant polymeric materials. Tests carried out on ABS and Nylon with layer thicknesses of 0.1 / 0.125 / 0.15 / 0.2mm and fillings of 30/50/100% demonstrate that there is a relationship between these parameters and the levels of warping in the printed part.
Description
Keywords
Precisão Controlo Geométrico Simulação numérica FFF Precision Geometric control Numerical simulation
