Name: | Description: | Size: | Format: | |
---|---|---|---|---|
5.06 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A acústica submarina está na base das operações anti-submarinas realizadas a bordo das unidades navais. A elevada superioridade tática que os submarinos detêm, torna relevante o desenvolvimento de ferramentas operacionais de previsão sonar, que permitam aos navios conhecer a probabilidade e alcance de deteção destas plataformas, para que o sonar seja empregue no sentido de aumentar as hipóteses de deteção, e consequentemente aumentar o desempenho ASW (Anti-Submarine Warfare) das unidades navais.
Assim, foi construída uma ferramenta operacional que responda às necessidades da Marinha Portuguesa, denominada de SeaRider, que engloba os quatro fatores que influenciam a previsão sonar: o equipamento acústico, o meio, o alvo e a plataforma. Devido à elevada complexidade que representa o ambiente submarino, e os fenómenos acústicos que ocorrem no seio deste, é necessário recorrer às equações sonar, que são simples somas e subtrações dos diversos parâmetros considerados. Para tal, foi efetuado um estudo das variáveis que influenciam individualmente cada parâmetro, no sentido de representar a realidade com o maior rigor possível.
Através deste programa são conhecidos os perfis de temperatura, salinidade e velocidade do som na coluna de água; o mapa e o perfil batimétrico do fundo do mar; o traçado de raios sonoros e interações dos mesmos com o fundo e a superfície; os gráficos de excesso de sinal e alcances de deteção e contra deteção. Com todas estas variáveis, os operadores desta ferramenta operacional detêm total conhecimento do ambiente submarino.
Assim, o SeaRider apresenta as seguintes vantagens: recorre à climatologia para a obtenção dos perfis de temperatura e salinidade, à escala mundial, nas resoluções de 1 e de 0,25 graus de latitude e de longitude, da World Ocean Database 2018 (fonte aberta) da NOAA, incluindo as climatologias de médias anuais, mensais e estações do ano; calcula o perfil batimétrico através da batimetria GEBCO do oceano, na resolução espacial de 0,5 milhas; usa uma abordagem coerente e automática para o cálculo do ruído ambiente e próprio e permite a entrada de dados de XBT, BT, CTD e SVP.
Underwater acoustics encompasses the anti-submarine operations performed on board the naval units. The high tactical superiority of submarines makes it important to develop operational sonar prediction tools that will allow ships to know the probability and range of detection of these platforms, so that sonar can be employed to increase detection chances, and consequently increase ASW (Anti-Submarine Warfare) performance of naval units. Thus, an operational tool was built that responds to the needs of the Portuguese Navy, called SeaRider, which encompasses the four factors that influence sonar prediction: the acoustic equipment, the environment, the target and the platform. Due to the high complexity that represents the underwater environment, and the acoustic phenomena that occur within it, it is necessary to resort to sonar equations, which are simple sums and subtractions of the various parameters considered. To this end, a study was made of the variables that individually influence each parameter, in order to represent reality as accurately as possible. Through this software the temperature, salinity and sound velocity profiles in the water column are known; the map and bathymetric profile of the seabed; the tracing of sound rays and their interactions with the bottom and surface; over signal and detection and counter detection ranges. With all these variables, the operators of this operating tool have full knowledge of the underwater environment. SeaRider has the following advantages: it uses climatology to obtain world-wide temperature and salinity profiles at 1 and 0.25 degree latitude and longitude resolutions from the World Ocean Database 2018 (open source) from NOAA, including annual, monthly and seasonal averages; calculates the bathymetric profile using the GEBCO ocean bathymetry at a spatial resolution of 0.5 miles; uses a coherent and automatic approach
Underwater acoustics encompasses the anti-submarine operations performed on board the naval units. The high tactical superiority of submarines makes it important to develop operational sonar prediction tools that will allow ships to know the probability and range of detection of these platforms, so that sonar can be employed to increase detection chances, and consequently increase ASW (Anti-Submarine Warfare) performance of naval units. Thus, an operational tool was built that responds to the needs of the Portuguese Navy, called SeaRider, which encompasses the four factors that influence sonar prediction: the acoustic equipment, the environment, the target and the platform. Due to the high complexity that represents the underwater environment, and the acoustic phenomena that occur within it, it is necessary to resort to sonar equations, which are simple sums and subtractions of the various parameters considered. To this end, a study was made of the variables that individually influence each parameter, in order to represent reality as accurately as possible. Through this software the temperature, salinity and sound velocity profiles in the water column are known; the map and bathymetric profile of the seabed; the tracing of sound rays and their interactions with the bottom and surface; over signal and detection and counter detection ranges. With all these variables, the operators of this operating tool have full knowledge of the underwater environment. SeaRider has the following advantages: it uses climatology to obtain world-wide temperature and salinity profiles at 1 and 0.25 degree latitude and longitude resolutions from the World Ocean Database 2018 (open source) from NOAA, including annual, monthly and seasonal averages; calculates the bathymetric profile using the GEBCO ocean bathymetry at a spatial resolution of 0.5 miles; uses a coherent and automatic approach
Description
Keywords
SeaRider Acústica Submarina Previsão Sonar MATLAB WOD18 raytracing