Name: | Description: | Size: | Format: | |
---|---|---|---|---|
25.78 MB | Adobe PDF |
Authors
Abstract(s)
Atualmente tem-se verificado uma crescente dependência em equipamentos elétricos e eletrónicos, em todos os setores da economia, na investigação científica e até no cidadão comum. O mundo militar não é exceção, recorrendo cada vez mais a estes equipamentos para aumentar a eficiência e eficácia de operações militares.
O principal problema destes equipamentos é a sua autonomia, dependente de uma fonte de energia elétrica: ainda que os equipamentos possuam baterias ou outras formas de armazenamento de energia, estas precisam de ser carregadas, tendo uma capacidade de armazenamento geralmente proporcional ao seu peso. Por sua vez, o peso das baterias transportadas por um militar apeado pode afetar de forma negativa a sua agilidade, diminuindo a sua capacidade operacional.
Têm vindo a ser desenvolvidas várias fontes de energia elétrica portáteis, visando o seu transporte e utilização por parte de um indivíduo apeado. Os geradores piezoelétricos transformam energia mecânica em energia elétrica, o que permite o aproveitamento de energia cinética dissipada para a produção de energia elétrica.
Nesta dissertação foi desenvolvido um protótipo de um gerador piezoelétrico integrado numa bota, passível de ser utilizado por um militar apeado para carregamento dos seus equipamentos elétricos e eletrónicos através do caminhar. Num ritmo de caminhada de um passo por segundo, o protótipo gerou 800.90 µJ de energia por passo, significando que são necessários aproximadamente sete milhões de passos para carregar totalmente uma pilha do tipo AAA.
Apesar de o protótipo isolado não se apresentar como uma fonte de energia elétrica eficaz para alimentar os equipamentos de um militar apeado, este pode ser utilizado juntamente com outras fontes de energia elétrica para o mesmo efeito, ou para aumentar a autonomia de sistemas de emergência de localização de indivíduos,
tais como sistemas de deteção de Homem ao Mar.
Nowadays there is an increasing dependence on electric and electronic devices, seen in all sectors of the economy, in the scientific research and in the average person’s life. The military world is no exception, employing these devices more frequently in order to improve the efficiency and the effectiveness of military operations. The main problem of these devices is their autonomy, which is dependent on an electrical power source: althought these devices have batteries or other energy storage components, these also need to be recharged, having a storage capacity often proportional to their weight. The weight of the batteries carried by a soldier can reduce his agility, decreasing his operational capabilities. Several portable electrical power sources have been developed, with the purpose of being carried and used by a single person on foot. Piezoelectric generators convert mechanical energy in electric energy, allowing the harvesting of dissipated kinetic energy to produce electric energy. In this thesis a prototype of a boot-integrated piezoelectric generator was developed that could be worn by a soldier on foot to supply electrical power to his devices. This prototype generated 800.90 µJ per step, on a one pace per second rhythm, meaning that it would take almost seven million steps to fully charge a AAA battery. Although this prototype is not an effective way to supply electrical power to a ground troop’s devices, it can be used, along with other types of electrical power sources to the same effect, or to increase the autonomy of emergency localizing systems such as Man Overboard detecting systems.
Nowadays there is an increasing dependence on electric and electronic devices, seen in all sectors of the economy, in the scientific research and in the average person’s life. The military world is no exception, employing these devices more frequently in order to improve the efficiency and the effectiveness of military operations. The main problem of these devices is their autonomy, which is dependent on an electrical power source: althought these devices have batteries or other energy storage components, these also need to be recharged, having a storage capacity often proportional to their weight. The weight of the batteries carried by a soldier can reduce his agility, decreasing his operational capabilities. Several portable electrical power sources have been developed, with the purpose of being carried and used by a single person on foot. Piezoelectric generators convert mechanical energy in electric energy, allowing the harvesting of dissipated kinetic energy to produce electric energy. In this thesis a prototype of a boot-integrated piezoelectric generator was developed that could be worn by a soldier on foot to supply electrical power to his devices. This prototype generated 800.90 µJ per step, on a one pace per second rhythm, meaning that it would take almost seven million steps to fully charge a AAA battery. Although this prototype is not an effective way to supply electrical power to a ground troop’s devices, it can be used, along with other types of electrical power sources to the same effect, or to increase the autonomy of emergency localizing systems such as Man Overboard detecting systems.
Description
Keywords
Piezoeletricidade gerador piezoelétrico, aproveitamento de energia energias renováveis