| Nome: | Descrição: | Tamanho: | Formato: | |
|---|---|---|---|---|
| 3.29 MB | Adobe PDF |
Orientador(es)
Resumo(s)
Esta dissertação explora o impacto da Generative Artificial Inteligence (Generative AI )e dos Large Language Models (LLM) na melhoria do desempenho das aplicações comerciais nas pequenas e médias empresas (PME). Através de uma revisão estruturada da literatura, o estudo visa proporcionar uma compreensão abrangente da evolução e do estado atual destas tecnologias, com especial incidência na sua aplicação nas PME. A investigação aborda uma lacuna significativa na literatura, desenvolvendo uma nova categorização das aplicações de LLM e Generative AI em vários domínios empresariais. A metodologia inclui uma análise exaustiva de fontes académicas e industriais, tendências de mercado e padrões de adoção entre as PME. Ao sintetizar esta informação, o estudo identifica os principais casos de utilização, os potenciais impactos no desempenho e os desafios associados à implementação destas tecnologias em ambientes de PME. Além disso, a investigação incorpora exemplos do mundo real e estudo de caso, incluindo uma análise dos impactos da adoção interna em organização na área de TI. A dissertação não só destaca o potencial da Generative AI e dos LLM para melhorar o desempenho empresarial, como também apresenta uma análise baseada em provas do seu impacto efetivo nas PME. Ao desenvolver uma taxonomia abrangente de aplicações e ao avaliar a sua eficácia em diferentes domínios empresariais, esta investigação fornece informações valiosas para as PME que consideram a integração destas tecnologias nas suas operações. O estudo conclui com recomendações acionáveis para as PME sobre como aproveitar eficazmente a Generative AI e os LLM, abordando os desafios de implementação e maximizando os seus potenciais benefícios. Além disso, delineia futuras linhas de investigação para continuar a avançar na compreensão destas tecnologias transformadoras no contexto das PME.
This thesis explores the impact of Generative AI and Large Language Models (LLM) on improving the performance of business applications in small and medium-sized enterprises (SME). Through a structured literature review, the study aims to provide a comprehensive understanding of the evolution and current state of these technologies, with a particular focus on their application in SME. The research addresses a significant gap in the literature by developing a novel categorization of LLM and Generative AI applications across various business domains. The methodology includes a thorough analysis of academic and industry sources, market trends, and adoption patterns among SME. By synthesizing this information, the study identifies key use cases, potential performance impacts, and challenges associated with implementing these technologies in SME environments. Additionally, the research incorporates real-world examples and case study, including an analysis of in-house adoption impacts from the author's workplace.The thesis not only highlights the potential of Generative AI and LLM to enhance business performance but also presents an evidence-based analysis of their actual impact on SME. By developing a comprehensive taxonomy of applications and assessing their effectiveness across different business domains, this research provides valuable insights for SME considering the integration of these technologies into their operations.The study concludes with actionable recommendations for SME on effectively leveraging Generative AI and LLM, addressing implementation challenges, and maximizing their potential benefits. Furthermore, it outlines future research directions to continue advancing the understanding of these transformative technologies in the context of SME.
This thesis explores the impact of Generative AI and Large Language Models (LLM) on improving the performance of business applications in small and medium-sized enterprises (SME). Through a structured literature review, the study aims to provide a comprehensive understanding of the evolution and current state of these technologies, with a particular focus on their application in SME. The research addresses a significant gap in the literature by developing a novel categorization of LLM and Generative AI applications across various business domains. The methodology includes a thorough analysis of academic and industry sources, market trends, and adoption patterns among SME. By synthesizing this information, the study identifies key use cases, potential performance impacts, and challenges associated with implementing these technologies in SME environments. Additionally, the research incorporates real-world examples and case study, including an analysis of in-house adoption impacts from the author's workplace.The thesis not only highlights the potential of Generative AI and LLM to enhance business performance but also presents an evidence-based analysis of their actual impact on SME. By developing a comprehensive taxonomy of applications and assessing their effectiveness across different business domains, this research provides valuable insights for SME considering the integration of these technologies into their operations.The study concludes with actionable recommendations for SME on effectively leveraging Generative AI and LLM, addressing implementation challenges, and maximizing their potential benefits. Furthermore, it outlines future research directions to continue advancing the understanding of these transformative technologies in the context of SME.
Descrição
Palavras-chave
Modelos de linguagem de grande escala Inteligência Artifical Generativa Inteligência Artificial ChatGPT Processamento de linguagem natural Aprendizagem automática Aplicações empresariais PME Large Language Models Generative AI Artificial Intelligence Natural Language Processing Machine Learning Business Applications SME
