Repository logo
 
Publication

Genetic information improves the prediction of major adverse cardiovascular events in the GENEMACOR population

dc.contributor.authorMendonca, Maria Isabel
dc.contributor.authorHenriques, Eva
dc.contributor.authorBorges, Sofia
dc.contributor.authorSousa, Ana Célia
dc.contributor.authorPereira, Andreia
dc.contributor.authorSantos, Marina
dc.contributor.authorTemtem, Margarida
dc.contributor.authorFreitas, Sónia
dc.contributor.authorMonteiro, Joel
dc.contributor.authorSousa, João Adriano
dc.contributor.authorRodrigues, Ricardo
dc.contributor.authorGuerra, Graça
dc.contributor.authorPalma Reis, Roberto
dc.date.accessioned2022-01-06T14:47:38Z
dc.date.available2022-01-06T14:47:38Z
dc.date.issued2021-06
dc.description.abstractThe inclusion of a genetic risk score (GRS) can modify the risk prediction of coronary artery disease (CAD), providing an advantage over the use of traditional models. The predictive value of the genetic information on the recurrence of major adverse cardiovascular events (MACE) remains controversial. A total of 33 genetic variants previously associated with CAD were genotyped in 1587 CAD patients from the GENEMACOR study. Of these, 18 variants presented an hazard ratio >1, so they were selected to construct a weighted GRS (wGRS). MACE discrimination and reclassification were evaluated by C-Statistic, Net Reclassification Index and Integrated Discrimination Improvement methodologies. After the addition of wGRS to traditional predictors, the C-index increased from 0.566 to 0.572 (p=0.0003). Subsequently, adding wGRS to traditional plus clinical risk factors, this model slightly improved from 0.620 to 0.622 but with statistical significance (p=0.004). NRI showed that 17.9% of the cohort was better reclassified when the primary model was associated with wGRS. The Kaplan-Meier estimator showed that, at 15-year follow-up, the group with a higher number of risk alleles had a significantly higher MACE occurrence (p=0.011). In CAD patients, wGRS improved MACE risk prediction, discrimination and reclassification over the conventional factors, providing better cost-effective therapeutic strategies.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMendonça MI, Henriques E, Borges S, et al. Genetic information improves the prediction of major adverse cardiovascular events in the GENEMACOR population. Genet Mol Biol. 2021;44(2):e20200448. Published 2021 Jun 11. doi:10.1590/1678-4685-GMB-2020-0448pt_PT
dc.identifier.doi10.1590/1678-4685-gmb-2020-0448pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.26/38669
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectTraditional risk factorspt_PT
dc.subjectgenetic risk scorept_PT
dc.subjectevents risk discrimination and reclassificationpt_PT
dc.subjectNet Reclassification Indexpt_PT
dc.subjectsecondary prevention of coronary artery diseasept_PT
dc.titleGenetic information improves the prediction of major adverse cardiovascular events in the GENEMACOR populationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue2pt_PT
oaire.citation.titleGenetics and Molecular Biologypt_PT
oaire.citation.volume44pt_PT
person.familyNameMendonca
person.familyNameHenriques
person.familyNameBorges
person.familyNameSousa
person.familyNamePereira
person.familyNameFreitas
person.familyNamePalma dos Reis
person.givenNameMaria Isabel
person.givenNameEva
person.givenNameSofia
person.givenNameAna Célia
person.givenNameAndreia
person.givenNameSónia
person.givenNameRoberto José
person.identifier.ciencia-idE915-4E29-A5FA
person.identifier.orcid0000-0001-5450-5213
person.identifier.orcid0000-0002-7312-5272
person.identifier.orcid0000-0002-9413-7942
person.identifier.orcid0000-0002-2069-0278
person.identifier.orcid0000-0001-7841-2468
person.identifier.orcid0000-0001-5204-8928
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationba3f31da-2490-4275-b438-a2bdef886460
relation.isAuthorOfPublication724bbfba-cf3b-427f-94ed-838be17ea7c3
relation.isAuthorOfPublication4f1bb9ed-356a-4c2e-b39a-2c53cae08fe4
relation.isAuthorOfPublicationeffe1ee0-c15a-49cb-a8d0-ae3b2cdfc7a0
relation.isAuthorOfPublication777cdec5-4e58-4303-bd23-d0e26ab1f5d8
relation.isAuthorOfPublicationc637da2f-a885-467c-9684-a23b715d0eba
relation.isAuthorOfPublicationffb49d0a-2ffa-45b9-a281-5c267813a0e4
relation.isAuthorOfPublication.latestForDiscovery777cdec5-4e58-4303-bd23-d0e26ab1f5d8

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GMB_2021.pdf
Size:
796.23 KB
Format:
Adobe Portable Document Format