Repository logo
 
Publication

Sales forecast in an IT company using time series

dc.contributor.authorSobreiro, Pedro
dc.contributor.authorMartinho, Domingos
dc.contributor.authorPratas, Antonio
dc.date.accessioned2019-06-20T22:25:52Z
dc.date.available2019-06-20T22:25:52Z
dc.date.issued2018
dc.description.abstractThe sales forecast is fundamental for the planning of the activity of the companies providing, important indicators for the support of the decisions of the managers. This study aims to explore the potential of time series prediction algorithms in an IT company. The forecast was based on the company's billing data for 192 months of activity. The analysis of the data was based on the Cross Industry Standard Process for Data Mining approach and for the treatment; we used the Anaconda IPython and Pandas. We developed the prediction with three models using R: Exponential Smoothing (Holt-Winters), autoregressive integrated moving average (ARIMA) and artificial neural networks (ANN). The comparison of the performance of each of the methods shows that the model based on artificial neural networks has a greater accuracy in the prediction. These results need deepening the study to broaden the universe of the studied contexts. However, the simplicity in the application of the artificial neural networks model makes possible its use in computer applications without specific knowledge, giving a reliable instrument that allows the supporting decision-making by managers.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.23919/CISTI.2018.8399191pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.26/28957
dc.language.isoporpt_PT
dc.peerreviewedyespt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8399191pt_PT
dc.subjectArtificial neural networkspt_PT
dc.subjectTime series analysispt_PT
dc.subjectSmoothing methodspt_PT
dc.subjectData miningpt_PT
dc.subjectPredictive modelspt_PT
dc.titleSales forecast in an IT company using time seriespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.title2018 13th Iberian Conference on Information Systems and Technologies (CISTI)pt_PT
person.familyNameSobreiro
person.familyNameMartinho
person.familyNamePratas
person.givenNamePedro
person.givenNameDomingos
person.givenNameAntonio
person.identifier.ciencia-idBB1F-BE0D-7909
person.identifier.ciencia-idDF14-D953-4D04
person.identifier.ciencia-idBC1F-6ED8-692E
person.identifier.orcid0000-0003-3971-3545
person.identifier.orcid0000-0002-5887-4814
person.identifier.orcid0000-0001-7870-8373
person.identifier.scopus-author-id57188867168
person.identifier.scopus-author-id57202938108
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication0892d734-fa80-4b15-87b8-493c10a72f72
relation.isAuthorOfPublicationc5d125b8-0dad-4298-807c-a24cd9780b32
relation.isAuthorOfPublication5a86f089-c589-42fd-a57f-e08caf2d636c
relation.isAuthorOfPublication.latestForDiscovery5a86f089-c589-42fd-a57f-e08caf2d636c

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SalesForecast_in_anIT_company .pdf
Size:
303.59 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Item-specific license agreed upon to submission
Description: