Repository logo
 
Loading...
Thumbnail Image
Publication

Predictive modelling in clinical bioinformatics : key concepts for startups

Use this identifier to reference this record.
Name:Description:Size:Format: 
Artigo_RicardoPais_2022_02.pdf284.83 KBAdobe PDF Download

Advisor(s)

Abstract(s)

Clinical bioinformatics is a newly emerging field that applies bioinformatics techniques for facilitating the identification of diseases, discovery of biomarkers, and therapy decision. Mathematical modelling is part of bioinformatics analysis pipelines and a fundamental step to extract clinical insights from genomes, transcriptomes and proteomes of patients. Often, the chosen modelling techniques relies on either statistical, machine learning or deterministic approaches. Research that combines bioinformatics with modelling techniques have been generating innovative biomedical technology, algorithms and models with biotech applications, attracting private investment to develop new business; however, startups that emerge from these technologies have been facing difficulties to implement clinical bioinformatics pipelines, protect their technology and generate profit. In this commentary, we discuss the main concepts that startups should know for enabling a successful application of predictive modelling in clinical bioinformatics. Here we will focus on key modelling concepts, provide some successful examples and briefly discuss the modelling framework choice. We also highlight some aspects to be taken into account for a successful implementation of cost-effective bioinformatics from a business perspective.

Description

Keywords

predictive modelling clinical bioinformatics mathematical models diagnostics prognostics clinical applications

Pedagogical Context

Citation

Pais RJ. Predictive Modelling in Clinical Bioinformatics: Key Concepts for Startups. BioTech. 2022; 11(3):35. https://doi.org/10.3390/biotech11030035

Research Projects

Organizational Units

Journal Issue

Publisher

MDPI

CC License

Altmetrics