Name: | Description: | Size: | Format: | |
---|---|---|---|---|
2.1 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A regeneração óssea constitui um campo de crescente importância tendo em contas as
limitações inerentes às abordagens tradicionais, utilizadas no tratamento de lesões ósseas. Nesse
contexto, surge a necessidade de desenvolver soluções inovadoras e eficazes para a restauração
do tecido ósseo danificado. O potencial impacto deste estudo é de magnitude considerável, uma
vez que se apresenta como uma possível via para melhorar a qualidade de vida dos doentes que
enfrentam lesões ósseas, acelerando o processo de recuperação e mitigando as complicações
associadas.
O principal objetivo deste trabalho consiste no desenvolvimento de filmes compostos à
base de biomateriais, com o propósito de servir como estrutura de suporte à regeneração do tecido
ósseo. Para tal, foram desenvolvidas formulações e processos de fabrico destes filmes, seguindo-
se a avaliação das suas propriedades físicas, químicas e biológicas, visando determinar a sua
eficácia como estruturas que promovam a regeneração óssea. Foram produzidas três composições
base dos filmes, fazendo variar as percentagens de alginato e ι-carragenina, possibilitando assim,
analisar o impacto da composição base no resultado final. Adicionalmente, foram exploradas duas
metodologias para a incorporação de hidroxiapatite (HA) nos filmes: a suspensão direta de HA
nas soluções filmogénicas e a deposição da HA durante o processo de cura. O processo de cura
compreendeu a imersão de uma ou ambas as faces do filme numa solução de cloreto de cálcio.
Os resultados indicam que a composição mais eficaz foi a 75%/25%. Além disso, a cura
em ambas as faces do filme proporcionou, em geral, melhores resultados, atingindo um módulo
de elasticidade de 6794 MPa e uma tensão de carga máxima de 66 MPa. A inclusão de HA na
composição dos filmes resultou numa redução de aproximadamente 65 % do módulo de
elasticidade, no entanto, a incorporação de HA na solução de cura demonstrou melhorias nos
ensaios de molhabilidade, com um ângulo de contacto mínimo de 9,0 º. Por fim, os ensaios
biológicos validaram os filmes como uma alternativa viável para a regeneração óssea,
evidenciando a adesão e proliferação celular. O filme que se destacou com melhores resultados
foi o filme 75-25-C2L, apresentando uma viabilidade média de 84%, contribuindo assim para
avanços práticos e inovadores no campo dos biomateriais para aplicações ortopédicas e
traumáticas
Bone regeneration constitutes a field of growing importance, due to the inherent limitations of traditional approaches used in the treatment of bone injuries. In this context, the need to develop innovative and effective solutions for the restoration of damaged bone tissue arises. The potential impact of this study is of considerable magnitude, as it presents itself as a possible avenue to enhance the quality of life for patients facing bone injuries, by accelerating the recovery process and mitigating associated complications. The primary objective of this work is the development of films composed of biomaterials, intended to serve as support structures for bone tissue regeneration. To achieve this, formulations and manufacturing processes of the films were developed, followed by the assessment of their physical, chemical, and biological properties, aiming to determine their effectiveness as structures promoting bone regeneration. Three base compositions of the films were produced, varying the percentages of alginate and carrageenan, thereby enabling an analysis of the impact of the base composition on the final outcome. Additionally, two methodologies for the incorporation of HA into the films were explored: the direct suspension of HA in the filmogenic solutions and the deposition of HA during the curing process. The curing process involved the immersion of one or both film faces in a solution of calcium chloride. The results indicate that the most effective composition was 75%/25%. Furthermore, curing on both sides of the film generally yielded better results, reaching an elasticity modulus of 6794 MPa and a maximum load stress of 66 MPa. The inclusion of HA in the film composition resulted in a reduction of approximately 65% in the elasticity modulus; however, incorporating HA into the curing solution demonstrated improvements in wettability tests, with a minimum contact angle of 9.0°. Finally, biological assays validated the films as a viable alternative for bone regeneration, highlighting cell adhesion and proliferation. The film that stood out with the best results was the 75-25-C2L film, presenting an average viability of 84%, thus contributing to practical and innovative advances in the field of biomaterials for orthopedic and traumatic applications.
Bone regeneration constitutes a field of growing importance, due to the inherent limitations of traditional approaches used in the treatment of bone injuries. In this context, the need to develop innovative and effective solutions for the restoration of damaged bone tissue arises. The potential impact of this study is of considerable magnitude, as it presents itself as a possible avenue to enhance the quality of life for patients facing bone injuries, by accelerating the recovery process and mitigating associated complications. The primary objective of this work is the development of films composed of biomaterials, intended to serve as support structures for bone tissue regeneration. To achieve this, formulations and manufacturing processes of the films were developed, followed by the assessment of their physical, chemical, and biological properties, aiming to determine their effectiveness as structures promoting bone regeneration. Three base compositions of the films were produced, varying the percentages of alginate and carrageenan, thereby enabling an analysis of the impact of the base composition on the final outcome. Additionally, two methodologies for the incorporation of HA into the films were explored: the direct suspension of HA in the filmogenic solutions and the deposition of HA during the curing process. The curing process involved the immersion of one or both film faces in a solution of calcium chloride. The results indicate that the most effective composition was 75%/25%. Furthermore, curing on both sides of the film generally yielded better results, reaching an elasticity modulus of 6794 MPa and a maximum load stress of 66 MPa. The inclusion of HA in the film composition resulted in a reduction of approximately 65% in the elasticity modulus; however, incorporating HA into the curing solution demonstrated improvements in wettability tests, with a minimum contact angle of 9.0°. Finally, biological assays validated the films as a viable alternative for bone regeneration, highlighting cell adhesion and proliferation. The film that stood out with the best results was the 75-25-C2L film, presenting an average viability of 84%, thus contributing to practical and innovative advances in the field of biomaterials for orthopedic and traumatic applications.
Description
Keywords
Regeneração óssea Biomateriais Filmes compostos Alginato Carragenina Hidroxiapatite Lesões ósseas Bone regeneration Biomaterials Composite films Alginate Carrageenan Hydroxyapatite Bone injuries