Repository logo
 
Loading...
Project Logo
Research Project

Efficient energy management in industrial microgrids with high penetration of PV technology

Authors

Publications

Net Zero Energy for Industrial and Commercial Microgrids: Approaches and Challenges
Publication . Bandeiras, Filipe; Gomes, Mário; Coelho, Paulo; Fernandes, José
This paper addresses the concept of net zero energy and net metering in efficient buildings in order to assist in the study and development of future microgrids for buildings with annual zero energy consumption. There are several definitions for zero energy buildings available in the literature with a distinct set of project goals and interests, but this work is focused on the definition that accounts for energy losses by converting each energy type to source energy. Finally, a case study is presented to evaluate whether four distinct all-electric buildings can achieve annual zero energy by deploying on-site renewable sources within their site boundary.
Performance Comparison of Grid-Faulty Control Schemes for Inverter-Based Industrial Microgrids
Publication . Camacho Santiago, Antonio; Castilla, Miguel; Canziani, Franco; Moreira, Carlos; Coelho, Paulo; Gomes, Mário; Mercado, Pedro
Several control schemes specifically designed to operate inverter-based industrial microgrids during voltage sags have been recently proposed. This paper first classifies these control schemes in three categories and then performs a comparative analysis of them. Representative control schemes of each category are selected, described and used to identify the main features and performance of the considered category. The comparison is based on the evaluation of several indexes, which measure the power quality of the installation and utility grid during voltage sags, including voltage regulation, reactive current injection and transient response. The paper includes selected simulation results from a 500 kVA industrial microgrid to validate the expected features of the considered control schemes. Finally, in view of the obtained results, the paper proposes an alternative solution to cope with voltage sags, which includes the use of a static compensator in parallel with the microgrid. The novelty of this proposal is the suitable selection of the control schemes for both the microgrid and the static compensator. The superior performance of the proposal is confirmed by the analysis of the quality indexes. Its practical limitations are also revealed, showing that the topic studied in this paper is still open for further research.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

3599-PPCDT

Funding Award Number

ERANETLAC/0006/2014

ID