Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- ID-Care: a Model for Sharing Wide Healthcare DataPublication . Humberto Jorge De Moura Costa; Cristiano Andre Da Costa; Antunes, Rodolfo S.; Righi, Rodrigo; Crocker, Paul; LEITHARDT, VALDERIAll over the world, there is a lot of patient health data in different locations such as hospitals, clinics, insurance companies, and other organizations. In this sense, global identification of the patient has emerged as an everyday healthcare challenge. Governments and institutions have to prioritize satisfactory, quick, and integrated decision-making in a wide, dispersed, and global environment because of unexpected challenges like pandemics or threats. In the current scientific literature, some of the existing challenges include support for a standard global unique identification that considers privacy issues, the combination of multiple technological biometry implementations, and personal documents. Thus, we propose a decentralized software model based on blockchain and smart contracts that includes privacy, global unique person identification supporting multiple combinations of documents, and biometric data using the Global Standards 1 - GS1 healthcare industry standard. Furthermore, we defined a methodology to evaluate a hypothetical use case of this model where an integrated and standard global health data sharing personal identification is crucial. For this, we implemented the proposed model in a global-wide continent location through cloud machines, fog computing, and blockchain considering the unique patient data identification and evaluate a use case scenario based on the top 5 most globally visited tourist destinations (France, Spain, the United States of America, China, and Italy), with an approach based on this model. The results show that using a model for a global id for healthcare can help reduce costs, time, and efforts, especially in the context of health threats, where agility and financial support must be prioritized.
- A Fog and Blockchain Software Architecture for a Global Scale Vaccination StrategyPublication . De Moura Costa, Humberto Jorge; Cristiano Andre Da Costa; Righi, Rodrigo; Antunes, Rodolfo S.; Juan Francisco De Paz Santana; LEITHARDT, VALDERINowadays, there are many fragmented records of patient’s health data in different locations like hospitals, clinics, and organizations all around the world. With the arrival of the COVID-19 pandemic, several governments and institutions struggled to have satisfactory, fast, and accurate decision-making in a wide, dispersed, and global environment. In the current literature, we found that the most common related challenges include delay (network latency), software scalability, health data privacy, and global patient identification. We propose to design, implement and evaluate a healthcare software architecture focused on a global vaccination strategy, considering healthcare privacy issues, latency mitigation, support of scalability, and the use of a global identification. We have designed and implemented a prototype of a healthcare software called Fog-Care, evaluating performance metrics like latency, throughput and send rate of a hypothetical scenario where a global integrated vaccination campaign is adopted in wide dispensed locations (Brazil, USA, and United Kingdom), with an approach based on blockchain, unique identity, and fog computing technologies. The evaluation results demonstrate that the minimum latency spends less than 1 second to run, and the average of this metric grows in a linear progression, showing that a decentralized infrastructure integrating blockchain, global unique identification, and fog computing are feasible to make a scalable solution for a global vaccination campaign within other hospitals, clinics, and research institutions around the world and its data-sharing issues of privacy, and identification.