IPT - OAI - Outras Publicações
Permanent URI for this collection
Browse
Browsing IPT - OAI - Outras Publicações by Issue Date
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- The journal "Conservar Património" in an international publishing environment - About the indexing in the "Scopus" database | A revista "Conservar Património" num ambiente de publicação internacional - A propósito da indexação na base de dados "Scopus"Publication . Cruz, António João; Figueira, Francisca; Revez, Maria João
- Robotic Vehicles For Fish Farming Applications - An OverviewPublication . Barros, F.M.; Neves, Pedro; Magalhães, Hugo; Ferreira, Carlos; Matos, Pedro; Diogo, HugoIndustrialization in the aquaculture sector is associated with the introduction of technology, since a large number of parameters have to be controlled in modern aquaculture systems. Some of these operations require sophisticated tools and specially designed facilities that have evolved through intensive research and great innovation (Mustafa 2016). Some of the custom-made technological inventions for aquaculture operations include, for example, the creation of semi-submersible cages, the implementation of automatic feeders and water recirculation systems. The use of robotics has increasingly found space among applications in the aquatic environment. The main objective is to collect information about the environment and, consequently, to manage resources better (Borović 2011). There have been reports of the use of robotic vehicles in aquaculture in applications such as: monitoring of water quality parameters, reduction of biological pests or unwanted predators and other agricultural and aquaculture applications. Boats, underwater vehicles and autonomous airplanes were designed and built to monitor and potentially manage aquaculture facilities, natural water bodies and drinking water (Dunbabin, 2009). The visible benefit of this technology is that it takes aquaculture systems to the next level, from the application of computer control and Artificial Intelligence to a greater degree of automation, effective management and decision making. The present work reviews some of the most recent robotic vehicles applied in fish farming applications and discusses its advantages and limitations.
- Sensor Networks For Aquaculture Monitoring SystemsPublication . Barros, F.M.; Magalhães, Hugo; Matos, Pedro; Neves, Pedro; Ferreira, Carlos; Baptista, Teresa; Ribeiro, AnaAquaculture is one of the fastest growing food producing sectors in the world, and its economic importance is increasing. Due to the increased demand for food, market pressure and growing concern about environmental and food quality issues, special techniques have been developed and applied to increase food production and improve product quality. Scientific advances in recent years in this sector have been facilitated largely by the application of science and the introduction of new technologies[1]. Emerging technologies in areas of sensor network, network computing and ubiquitous computing are enabling the development of practical and innovative solutions, improving monitoring and decision-making capabilities[2]. Innovations in water quality monitoring, fish feeding, biomass estimation, fish behavior monitoring, disease diagnosis and food waste management can not only improve the degree of automation of aquaculture and the level of scientific management, but also reduce the cost of production, improve environmental control and increase product quality[3]. Despite the great progress of science and technology, the optimization and management of production processes of aquaculture systems is facing great challenges[4]. The objectives of the present work are to review and analyze the currently scientific advances in technology applied in aquaculture systems, exploring the processes, architectures, the automation level and the role of sensors and new information technologies in this sector of activity.