Name: | Description: | Size: | Format: | |
---|---|---|---|---|
1.22 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Esta tese de mestrado, desenvolvida na MAHLE, uma fabricante alemã de anéis de
pistão para motores de combustão com uma fábrica em Murtede, Portugal, teve como
objetivo desenvolver uma ferramenta automatizada para calcular a utilização da
capacidade das máquinas e auxiliar no planeamento da produção. A ferramenta ajusta
previsões anuais e de cinco anos de acordo com as mudanças nas condições projetadas
e permite realizar simulações e projeções de cenários futuros com base nas demandas
dos clientes da indústria automóvel.
A necessidade deste software surgiu das limitações da ferramenta atual, que era
baseada em folhas de cálculo. Esta ferramenta exigia muitas iterações manuais, tempo
excessivo para correr e não fornecia resultados otimizados. Portanto, era necessária
uma solução altamente automatizada que pudesse utilizar e atualizar rapidamente a
base de dados existente.
Para alcançar isso, todas as máquinas na fábrica e os fluxos de produção de cada linha
foram mapeados. As máquinas foram agrupadas em clusters, e dados como tempos
de ciclo de produção para os principais anéis, tempos de configuração das máquinas,
dados de qualidade (percentual de refugo) e outras informações relevantes necessárias
para calcular a capacidade foram recolhidos. Formulações matemáticas em SQL foram
desenvolvidas para determinar a utilização da capacidade das máquinas.
Além de cumprir o seu objetivo principal, a nova ferramenta mostrou-se
significativamente útil na identificação de gargalos e no apoio aos departamentos de
finanças, produção e recursos humanos na tomada de decisões informadas sobre a
aquisição de novas máquinas, planeamento de horários de trabalho e otimização da
distribuição homem-máquina. Isto permitiu uma gestão mais eficaz e aumentou a
capacidade de atender à procura dos clientes. Além disso, a ferramenta contribui
significativamente para a gestão estratégica dos ativos físicos industriais, otimizando a
atribuição de recursos, o que é crucial para manter a vantagem competitiva e a
eficiência operacional no setor industrial.
This master's thesis developed at MAHLE, a German manufacturer of piston rings for combustion engines with a factory in Murtede, Portugal, aimed to develop an automated tool for calculating machine capacity utilization. The tool adjusts annual and five-year forecasts according to projected changes and allows for simulations and projections based on customer demands in the automotive industry. The need for this software arose from the limitations of the current tool, which was based on spreadsheets. This tool required many manual iterations, excessive running time, and did not provide optimized results. Therefore, a highly automated solution that could quickly utilize and update the existing database was needed. To achieve this, all machines in the factory and the production flows for each line were mapped. The machines were grouped into clusters, and data such as production cycle times for the main rings, machine setup times, quality data (scrap percentage), and other relevant information needed to calculate capacity were collected. Mathematical formulations in SQL were developed to determine the capacity utilization of the machines. In addition to meeting its primary objective, the new tool has proven significantly helpful in identifying bottlenecks and supporting the finance, production, and human resources departments in making informed decisions about acquiring new machinery, planning work schedules, and optimizing man-machine distribution. This has enabled more effective management and enhanced the ability to meet customer demand. Furthermore, the tool significantly contributes to the strategic management of industrial physical assets by optimizing resource allocation, which is crucial for maintaining competitive advantage and operational efficiency in the manufacturing sector.
This master's thesis developed at MAHLE, a German manufacturer of piston rings for combustion engines with a factory in Murtede, Portugal, aimed to develop an automated tool for calculating machine capacity utilization. The tool adjusts annual and five-year forecasts according to projected changes and allows for simulations and projections based on customer demands in the automotive industry. The need for this software arose from the limitations of the current tool, which was based on spreadsheets. This tool required many manual iterations, excessive running time, and did not provide optimized results. Therefore, a highly automated solution that could quickly utilize and update the existing database was needed. To achieve this, all machines in the factory and the production flows for each line were mapped. The machines were grouped into clusters, and data such as production cycle times for the main rings, machine setup times, quality data (scrap percentage), and other relevant information needed to calculate capacity were collected. Mathematical formulations in SQL were developed to determine the capacity utilization of the machines. In addition to meeting its primary objective, the new tool has proven significantly helpful in identifying bottlenecks and supporting the finance, production, and human resources departments in making informed decisions about acquiring new machinery, planning work schedules, and optimizing man-machine distribution. This has enabled more effective management and enhanced the ability to meet customer demand. Furthermore, the tool significantly contributes to the strategic management of industrial physical assets by optimizing resource allocation, which is crucial for maintaining competitive advantage and operational efficiency in the manufacturing sector.
Description
Keywords
Capacidade de utilização das máquinas Ferramenta automatizada Otimização Previsão de produção Gestão de ativos físicos industriais