Name: | Description: | Size: | Format: | |
---|---|---|---|---|
191.92 KB | Adobe PDF |
Advisor(s)
Abstract(s)
In thisworkavalencerecognitionsystembasedonelectroencephalogramsispresented.Theperformanceof
the systemisevaluatedfortwosettings:singlesubjects(intra-subject)andbetweensubjects(inter-subject).
The featureextractionisbasedonmeasuresofrelativeenergiescomputedinshorttimeintervalsandcertain
frequencybands.Thefeatureextractionisperformedeitheronsignalsaveragedoveranensembleoftrialsor
on single-trialresponsesignals.Thesubsequentclassificationstageisbasedonanensembleclassifier,i.e.a
random forestoftreeclassifiers.Theclassificationisperformedconsideringtheensembleaverageresponsesof
all subjects(inter-subject)orconsideringthesingle-trialresponsesofsinglesubjects(intra-subject).Applying
a properimportancemeasureoftheclassifier,featureeliminationhasbeenusedtoidentifythemostrelevant
features of the decision making.
Description
Keywords
Valence Detection RandomForest ERD/ERS
Citation
Publisher
SCITEPRESS