| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 7.7 MB | Adobe PDF |
Abstract(s)
Este trabalho apresenta o estudo, análise e validação de perfis hidrodinâmicos NACA (National Advisory Committee for Aeronautics) para aplicação no sistema propulsivo biomimético do veículo subaquático autónomo PETINGA dos projetos SABUVIS I & SABUVIS II. A investigação iniciou-se com a simulação numérica de cinco perfis distintos (NACA 2412, NACA 0015, NACA 0014, NACA 0012 e NACA 2408), recorrendo à Dinâmica de Fluidos Computacional (CFD, do inglês, Computacional Fluid Dynamics), com o objetivo de identificar a solução mais eficiente em termos de razão sustentação/arrasto (CL/CD) e força de propulsão média (ou thrust).
Os resultados das simulações demonstraram que, embora os valores de thrust fossem semelhantes, o perfil NACA 0014 destacou-se pela maior eficiência hidrodinâmica, evidenciada pelo valor médio mais elevado de CL/CD. De seguida, foi realizada uma análise aprofundada da influência da frequência (0,5–2 Hz) e da amplitude de oscilação (10◦–40◦), concluindo-se que o movimento de 2 Hz e 40◦ gera o melhor compromisso entre força propulsiva e eficiência energética.
Para validar os resultados numéricos, foi desenvolvido um aparato experimental com aquisição de dados em tempo real através de um microcontrolador Arduino. Os ensaios experimentais, embora não tenham reproduzido os valores absolutos previstos pelas simulações, confirmaram qualitativamente as tendências observadas: maiores frequências e amplitudes potenciam maiores forças propulsivas.
Conclui-se que o perfil NACA 0014 é a solução mais robusta para ser implementada como barbatana oscilatória no PETINGA, assegurando uma conversão eficiente do movimento oscilatório em impulso hidrodinâmico, em consonância com os princípios da propulsão biomimética.
This dissertation presents a study, analysis, and validation of NACA hydrodynamic profiles for application in the biomimetic propulsion system of the autonomous underwater vehicle PETINGA of the SABUVIS I & SABUVIS II projects. The research began with the numerical simulation of five distinct profiles (NACA 2412, NACA 0015, NACA 0014, NACA 0012, and NACA 2408), using Computational Fluid Dynamics (CFD) with the aim of identifying the most efficient solution in terms of lift-to-drag ratio (CL/CD) and average thrust force. Simulation results revealed that, although thrust values were similar, the NACA 0014 profile clearly stood out due to its higher hydrodynamic efficiency, expressed by the highest CL/CD ratio. Subsequently, a detailed analysis of the effects of oscillation frequency (0.5–2 Hz) and amplitude (10◦ 40◦) showed that the motion at 2 Hz and 40◦ provides the optimal balance between thrust generation and energy efficiency. To validate the numerical findings, an experimental apparatus was developed with real-time data acquisition through an Arduino microcontroller. Although the experimental tests did not fully reproduce the absolute thrust values predicted by CFD, they qualitatively confirmed the numerical trends: higher frequencies and amplitudes lead to greater propulsive forces. The study concludes that the NACA 0014 profile represents the most suitable solution for integration as an oscillating fin in PETINGA, ensuring an efficient conversion of oscillatory motion into hydrodynamic thrust, fully aligned with the principles of biomimetic propulsion.
This dissertation presents a study, analysis, and validation of NACA hydrodynamic profiles for application in the biomimetic propulsion system of the autonomous underwater vehicle PETINGA of the SABUVIS I & SABUVIS II projects. The research began with the numerical simulation of five distinct profiles (NACA 2412, NACA 0015, NACA 0014, NACA 0012, and NACA 2408), using Computational Fluid Dynamics (CFD) with the aim of identifying the most efficient solution in terms of lift-to-drag ratio (CL/CD) and average thrust force. Simulation results revealed that, although thrust values were similar, the NACA 0014 profile clearly stood out due to its higher hydrodynamic efficiency, expressed by the highest CL/CD ratio. Subsequently, a detailed analysis of the effects of oscillation frequency (0.5–2 Hz) and amplitude (10◦ 40◦) showed that the motion at 2 Hz and 40◦ provides the optimal balance between thrust generation and energy efficiency. To validate the numerical findings, an experimental apparatus was developed with real-time data acquisition through an Arduino microcontroller. Although the experimental tests did not fully reproduce the absolute thrust values predicted by CFD, they qualitatively confirmed the numerical trends: higher frequencies and amplitudes lead to greater propulsive forces. The study concludes that the NACA 0014 profile represents the most suitable solution for integration as an oscillating fin in PETINGA, ensuring an efficient conversion of oscillatory motion into hydrodynamic thrust, fully aligned with the principles of biomimetic propulsion.
Description
Keywords
Propulsão biomimética NACA 0014 CFD Veículos subaquáticos autónomos SABUVIS Biomimetic propulsion Autonomous underwater vehicles
