Publication
Exploring Song Segmentation for Music Emotion Variation Detection
dc.contributor.author | Ferreira, Tomas | |
dc.contributor.author | Redinho, Hugo | |
dc.contributor.author | Louro, Pedro L. | |
dc.contributor.author | Malheiro, Ricardo | |
dc.contributor.author | Paiva, Rui Pedro | |
dc.contributor.author | Panda, Renato | |
dc.date.accessioned | 2024-09-16T11:02:57Z | |
dc.date.available | 2024-09-16T11:02:57Z | |
dc.date.issued | 2024-09 | |
dc.description.abstract | This paper evaluates the impact of song segmentation on Music Emotion Variation Detection (MEVD). In particular, the All-In-One song-structure segmentation system was employed to this end and compared to a fixed 1.5-sec window approach. Acoustic features were extracted for each obtained segment/window, which were classified with SVMs. The attained results (best F1-score of 55.9%) suggest that, despite its promise, the potential of this song segmentation approach was not fully exploited, possibly due to the small employed dataset. Nevertheless, preliminary results are encouraging. | pt_PT |
dc.description.sponsorship | This work is funded by FCT - Foundation for Science and Technology, I.P., within the scope of the projects: MERGE - DOI: 10.54499/PTDC/CCI-COM/3171/2021 financed with national funds (PIDDAC) via the Portuguese State Budget; and project CISUC - UID/CEC/00326/2020 with funds from the European Social Fund, through the Regional Operational Program Centro 2020. Renato Panda was supported by Ci2 - FCT UIDP/05567/2020. | pt_PT |
dc.description.version | info:eu-repo/semantics/acceptedVersion | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.26/52074 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.relation | Smart Cities Research Center | |
dc.subject | MEVD | pt_PT |
dc.subject | music emotion variation detection | pt_PT |
dc.subject | song segmentation | pt_PT |
dc.title | Exploring Song Segmentation for Music Emotion Variation Detection | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Smart Cities Research Center | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/Concurso de Projetos IC&DT em Todos os Domínios Científicos/PTDC%2FCCI-COM%2F3171%2F2021/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05567%2F2020/PT | |
oaire.citation.conferencePlace | Vilnius, Lithuania | pt_PT |
oaire.citation.title | 15th International Workshop on Machine Learning and Music (MML2024), in Conjunction with ECML/PKDD 2024 | pt_PT |
oaire.fundingStream | Concurso de Projetos IC&DT em Todos os Domínios Científicos | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Ferreira | |
person.familyName | Redinho | |
person.familyName | Lima Louro | |
person.familyName | Malheiro | |
person.familyName | Pinto de Carvalho e Paiva | |
person.familyName | Panda | |
person.givenName | Tomas | |
person.givenName | Hugo | |
person.givenName | Pedro Miguel | |
person.givenName | Ricardo | |
person.givenName | Rui Pedro | |
person.givenName | Renato | |
person.identifier | WT5afVUAAAAJ | |
person.identifier.ciencia-id | 4517-42EE-8B4D | |
person.identifier.ciencia-id | C315-8AA7-2C25 | |
person.identifier.ciencia-id | B81A-CB99-A4DF | |
person.identifier.ciencia-id | AA16-002F-5AE3 | |
person.identifier.ciencia-id | 661A-31CC-8D19 | |
person.identifier.orcid | 0009-0006-5102-6915 | |
person.identifier.orcid | 0009-0004-1547-2251 | |
person.identifier.orcid | 0000-0003-3201-6990 | |
person.identifier.orcid | 0000-0002-3010-2732 | |
person.identifier.orcid | 0000-0003-3215-3960 | |
person.identifier.orcid | 0000-0003-2539-5590 | |
person.identifier.rid | L-9369-2017 | |
person.identifier.scopus-author-id | 55354413900 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | a90514d2-06ec-4c76-b32d-5ae312f9a04f | |
relation.isAuthorOfPublication | 90f8aa11-754d-424a-a877-891f5dc386ab | |
relation.isAuthorOfPublication | 953b69db-f6a0-4a54-8618-93a912df6df6 | |
relation.isAuthorOfPublication | d38dd344-0942-4fcb-b740-a4713fb170e7 | |
relation.isAuthorOfPublication | 238ee6f8-61cd-49b4-9392-9e7763fd35f3 | |
relation.isAuthorOfPublication | 9cd470af-3968-45cc-ad6f-3b59e00ae823 | |
relation.isAuthorOfPublication.latestForDiscovery | 953b69db-f6a0-4a54-8618-93a912df6df6 | |
relation.isProjectOfPublication | e648ae20-a186-43e5-9eb8-11ce8dd43b52 | |
relation.isProjectOfPublication | 91a1f43f-7ed3-4791-8ded-837ad57c2f14 | |
relation.isProjectOfPublication.latestForDiscovery | 91a1f43f-7ed3-4791-8ded-837ad57c2f14 |
Files
Original bundle
1 - 3 of 3
No Thumbnail Available
- Name:
- Ferreira et al. - 2024 - Exploring Song Segmentation for Music Emotion Variation Detection.pdf
- Size:
- 256.99 KB
- Format:
- Adobe Portable Document Format
- Description:
- paper
No Thumbnail Available
- Name:
- Ferreira et al. - 2024 - Exploring Song Segmentation for Music Emotion Variation Detection (slides).pdf
- Size:
- 1.21 MB
- Format:
- Adobe Portable Document Format
- Description:
- slides
No Thumbnail Available
- Name:
- Ferreira et al. - 2024 - Exploring Song Segmentation for Music Emotion Variation Detection (poster).pdf
- Size:
- 914.3 KB
- Format:
- Adobe Portable Document Format
- Description:
- poster
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.85 KB
- Format:
- Item-specific license agreed upon to submission
- Description: