Repository logo
 
Publication

On Orthogonal Projections of Symplectic Balls

dc.contributor.authorDias, C. Nuno
dc.contributor.authorGosson, A. Maurice
dc.contributor.authorPrata, N. João
dc.date.accessioned2025-11-11T10:47:51Z
dc.date.available2025-11-11T10:47:51Z
dc.date.issued2024
dc.description.abstractWe study the orthogonal projections of symplectic balls in R2n on complex subspaces. In particular we show that these projections are themselves symplectic balls under a certain complexity assumption. Our main result is a refinement of a recent very interesting result of Abbondandolo and Matveyev extending the linear version of Gromov’s non-squeezing theorem. We use a conceptually simpler approachwhere the Schur complement of a matrix plays a central role. An application to the partial traces of density matrices is given.eng
dc.identifier.citationDias, N. C., de Gosson, M. A., & Prata, J. N. (2024). On orthogonal projections of symplectic balls. Comptes Rendus. Mathématique, 362(G3), 217-227.
dc.identifier.doi10.5802/crmath.542
dc.identifier.urihttp://hdl.handle.net/10400.26/59608
dc.language.isoeng
dc.peerreviewedyes
dc.publisherAcadémie des sciences
dc.relation.hasversionhttps://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.542/
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectSymplectic ball
dc.subjectorthogonal projection
dc.subjectGromov’s non-squeezing theorem
dc.titleOn Orthogonal Projections of Symplectic Ballseng
dc.title.alternativeSur les projections orthogonales de boules symplectiqueseng
dc.typereview article
dspace.entity.typePublication
oaire.citation.endPage227
oaire.citation.startPage217
oaire.citation.titleComptes Rendus Mathématique
oaire.citation.volume362
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On_Orthogonal_Projections_of_Symplectic_Balls.pdf
Size:
413.76 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Item-specific license agreed upon to submission
Description: