Repository logo
 
Publication

Transferability of Deep Learning Models in Searches for New Physics at Colliders

dc.contributor.authorM. Crispim Romao
dc.contributor.authorN. F. Castro
dc.contributor.authorR. Pedro
dc.contributor.authorT. Vale
dc.date.accessioned2020-11-06T14:07:09Z
dc.date.available2020-11-06T14:07:09Z
dc.date.issued2019-12-09
dc.description.abstractIn this work we assess the transferability of deep learning models to detect beyond the standard model signals. For this we trained Deep Neural Networks on three different signal models: $tZ$ production via a flavour changing neutral current, pair-production of vector-like $T$-quarks via standard model gluon fusion and via a heavy gluon decay in a grid of 3 mass points: 1, 1.2 and 1.4 TeV. These networks were trained with $t\bar{t}$, $Z$+jets and dibosons as the main backgrounds. Limits were derived for each signal benchmark using the inference of networks trained on each signal independently, so that we can quantify the degradation of their discriminative power across different signal processes. We determine that the limits are compatible within uncertainties for all networks trained on signals with vector-like $T$-quarks, whether they are produced via heavy gluon decay or standard model gluon fusion. The network trained on flavour changing neutral current signal, while struggling the most on the other signals, still produce reasonable limits. These results indicate that deep learning models are capable of providing sensitivity in the search for new physics even if it manifests itself in models not assumed during training.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1103/PhysRevD.101.035042pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.26/33951
dc.language.isoengpt_PT
dc.titleTransferability of Deep Learning Models in Searches for New Physics at Colliderspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue3pt_PT
oaire.citation.titlePhys. Rev. D 101, 035042 (2020)pt_PT
oaire.citation.volume101pt_PT
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevD.101.035042.pdf
Size:
645.41 KB
Format:
Adobe Portable Document Format