Publication
Low-Cost CNN for Automatic Violence Recognition on Embedded System
dc.contributor.author | Vieira, J. C. | |
dc.contributor.author | Sartori, Andreza | |
dc.contributor.author | Stefenon, Stéfano Frizzo | |
dc.contributor.author | Perez, Fabio Luis | |
dc.contributor.author | Schneider De Jesus, Gabriel | |
dc.contributor.author | LEITHARDT, VALDERI | |
dc.date.accessioned | 2023-02-01T18:43:24Z | PT |
dc.date.available | 2023-02-01T18:43:24Z | PT |
dc.date.issued | 2022 | PT |
dc.date.updated | 2022-03-12T11:13:49Z | |
dc.description.abstract | Due to the increasing number of violence cases, there is a high demand for efficient monitoring systems, however, these systems can be susceptible to failure. Therefore, this work proposes the analysis and application of low-cost Convolutional Neural Networks (CNNs) techniques to automatically recognize and classify suspicious events. Thus, it is possible to alert and assist the monitoring process with a reduced deployment cost. For this purpose, a dataset with violence and non-violence actions in scenes of crowded and non-crowded environments was assembled. The mobile CNNs architectures were adapted and obtained a classification accuracy of up to 92.05%, with a low number of parameters. To demonstrate the models validity, a prototype was developed by using an embedded Raspberry Pi platform, able to execute a model in real-time with 4 frames-per-second of speed. In addition, a warning system was developed to recognize pre-fight behavior and anticipate violent acts, alerting security to potential situations. | pt_PT |
dc.description.version | N/A | pt_PT |
dc.identifier.doi | 10.1109/ACCESS.2022.3155123 | pt_PT |
dc.identifier.slug | cv-prod-2950384 | |
dc.identifier.uri | http://hdl.handle.net/10400.26/43566 | PT |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.relation | Research Center for Endogenous Resource Valorization | |
dc.relation | COPELABS - Cognitive and People-centric Computing R&D Unit | |
dc.subject | Neural networks, | pt_PT |
dc.subject | artificial neural networks, | pt_PT |
dc.subject | image processing, | pt_PT |
dc.subject | image classification | pt_PT |
dc.title | Low-Cost CNN for Automatic Violence Recognition on Embedded System | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Research Center for Endogenous Resource Valorization | |
oaire.awardTitle | COPELABS - Cognitive and People-centric Computing R&D Unit | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05064%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04111%2F2020/PT | |
oaire.citation.endPage | 1 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | IEEE Access | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Vieira | |
person.familyName | Sartori | |
person.familyName | Stefenon | |
person.familyName | Perez | |
person.familyName | Schneider de Jesus | |
person.familyName | REIS QUIETINHO LEITHARDT | |
person.givenName | Joelton Cezar | |
person.givenName | Andreza | |
person.givenName | Stefano Frizzo | |
person.givenName | Fabio Luis | |
person.givenName | Gabriel | |
person.givenName | VALDERI | |
person.identifier | 916543 | |
person.identifier | JsOq45sAAAAJ&hl=pt-PT | |
person.identifier.ciencia-id | 4019-BB36-7F74 | |
person.identifier.ciencia-id | 0614-5834-E7F3 | |
person.identifier.orcid | 0000-0002-4677-7160 | |
person.identifier.orcid | 0000-0002-3982-8767 | |
person.identifier.orcid | 0000-0002-3723-616X | |
person.identifier.orcid | 0000-0001-5223-1562 | |
person.identifier.orcid | 0000-0001-9357-1248 | |
person.identifier.orcid | 0000-0003-0446-9271 | |
person.identifier.rid | AAD-7639-2019 | |
person.identifier.scopus-author-id | 57194147390 | |
person.identifier.scopus-author-id | 55813849500 | |
person.identifier.scopus-author-id | 35303109600 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.cv.cienciaid | 0614-5834-E7F3 | Valderi Reis Quietinho Leithardt | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 4124607a-344c-4834-a138-a4a1a4b7efac | |
relation.isAuthorOfPublication | 9c24ac3c-b7ec-48e9-abb0-8f9485e3b4f1 | |
relation.isAuthorOfPublication | ae8b0861-1e25-47fb-bcdb-a44c98768634 | |
relation.isAuthorOfPublication | 7389294a-3bc2-4d00-976e-d0122ddfb1b6 | |
relation.isAuthorOfPublication | f7e006ba-9c58-4cbf-a8aa-68f2dacd783a | |
relation.isAuthorOfPublication | ab15f7c6-e882-406e-813d-2629e9cec5c8 | |
relation.isAuthorOfPublication.latestForDiscovery | 7389294a-3bc2-4d00-976e-d0122ddfb1b6 | |
relation.isProjectOfPublication | 05110dfa-e1d5-4a80-ad88-5c36b9c4552f | |
relation.isProjectOfPublication | 7a9b4ee8-2a94-4a7b-bd54-c01b8971564a | |
relation.isProjectOfPublication.latestForDiscovery | 7a9b4ee8-2a94-4a7b-bd54-c01b8971564a |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Low-Cost_CNN_for_Automatic_Violence_Recognition_on_Embedded_System.pdf
- Size:
- 2.13 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.89 KB
- Format:
- Item-specific license agreed upon to submission
- Description: