Repository logo
 
Publication

Analysis of Adaptive Algorithms Based on Least Mean Square Applied to Hand Tremor Suppression Control

dc.contributor.authorAlves Araujo, Rafael Silfarney
dc.contributor.authorTironi, Jéssica Cristina
dc.contributor.authorD. Parreira, Wemerson
dc.contributor.authorCoelho Borges, Renata
dc.contributor.authorRuiz Juan, Francisco
dc.contributor.authorLEITHARDT, VALDERI
dc.date.accessioned2023-03-17T11:28:21Zen
dc.date.available2023-03-17T11:28:21Zen
dc.date.issued2023-03-02en_US
dc.date.updated2023-03-04T10:56:25ZPT
dc.description.abstractThe increase in life expectancy, according to the World Health Organization, is a fact, and with it rises the incidence of age-related neurodegenerative diseases. The most recurrent symptoms are those associated with tremors resulting from Parkinson’s disease (PD) or essential tremors (ETs). The main alternatives for the treatment of these patients are medication and surgical intervention, which sometimes have restrictions and side effects. Through computer simulations in Matlab software, this work investigates the performance of adaptive algorithms based on least mean squares (LMS) to suppress tremors in upper limbs, especially in the hands. The signals resulting from pathological hand tremors, related to PD, present components at frequencies that vary between 3 Hz and 6 Hz, with the more significant energy present in the fundamental and second harmonics, while physiological hand tremors, referred to ET, vary between 4 Hz and 12 Hz. We simulated and used these signals as reference signals in adaptive algorithms, filtered-x least mean square (Fx-LMS), filtered-x normalized least mean square (Fx-NLMS), and a hybrid Fx-LMS–NLMS purpose. Our results showed that the vibration control provided by the Fx-LMS–LMS algorithm is the most suitable for physiological tremors. For pathological tremors, we used a proposed algorithm with a filtered sinusoidal input signal, Fsinx-LMS, which presented the best results in this specific case.PT
dc.description.versionN/APT
dc.identifier.doi10.3390/app13053199en_US
dc.identifier.slugcv-prod-3155714PT
dc.identifier.urihttp://hdl.handle.net/10400.26/44205en
dc.language.isoengpor
dc.titleAnalysis of Adaptive Algorithms Based on Least Mean Square Applied to Hand Tremor Suppression Controlen_US
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleApplied Sciencesen_US
person.familyNameAlves Araujo
person.familyNameTironi
person.familyNameD. Parreira
person.familyNameCoelho Borges
person.familyNameRuiz Juan
person.familyNameREIS QUIETINHO LEITHARDT
person.givenNameRafael Silfarney
person.givenNameJéssica Cristina
person.givenNameWemerson
person.givenNameRenata
person.givenNameFrancisco
person.givenNameVALDERI
person.identifier2805969
person.identifierJsOq45sAAAAJ&hl=pt-PT
person.identifier.ciencia-id0614-5834-E7F3
person.identifier.orcid0000-0003-2711-5097
person.identifier.orcid0000-0003-0753-1421
person.identifier.orcid0000-0003-1896-0520
person.identifier.orcid0000-0003-3259-5646
person.identifier.orcid0000-0002-8206-3595
person.identifier.orcid0000-0003-0446-9271
person.identifier.ridO-9875-2017
person.identifier.scopus-author-id47061695000
person.identifier.scopus-author-id35303109600
rcaap.cv.cienciaid0614-5834-E7F3 | Valderi Reis Quietinho LeithardtPT
rcaap.rightsclosedAccessen_US
rcaap.typearticleen_US
relation.isAuthorOfPublication977adb09-f9da-4800-9ef2-f4af867ce188
relation.isAuthorOfPublicationf1acb187-58ab-43be-9164-d99263252ebc
relation.isAuthorOfPublicatione6e57c5a-2e44-4f88-aded-0b6df34e44e1
relation.isAuthorOfPublicationbef509a8-b95a-4692-9f0d-5139081eb1b6
relation.isAuthorOfPublication67634c4f-87ae-43c9-a784-56cfd40c2bc3
relation.isAuthorOfPublicationab15f7c6-e882-406e-813d-2629e9cec5c8
relation.isAuthorOfPublication.latestForDiscoverybef509a8-b95a-4692-9f0d-5139081eb1b6

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
applsci-13-03199.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Item-specific license agreed upon to submission
Description: