| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 8.6 MB | Adobe PDF |
Authors
Abstract(s)
A crescente dependência de fontes externas de energia em operações militares representa um desafio logístico e estratégico, especialmente em ambientes remotos ou hostis. A necessidade de soluções energéticas autónomas, sustentáveis e de baixa manutenção tem impulsionado o desenvolvimento de sistemas de colheita de energia capazes de alimentar dispositivos eletrónicos de forma contínua e eficiente.
Neste contexto, esta dissertação propõe a análise da viabilidade de um sistema de colheita de energia baseado no módulo BQ25570, alimentado por fontes renováveis de baixa potência, como painéis solares, transdutores piezoelétricos e células de Peltier. O trabalho combina simulações no software TINA-TI com ensaios experimentais, avaliando o desempenho do sistema em condições reais e controladas. Os resultados demonstram que, entre as fontes testadas, apenas o painel solar foi capaz de carregar efetivamente o supercondensador, atingindo os limiares necessários para ativação do circuito. As fontes térmica e piezoelétrica, embora tenham gerado tensão, não apresentaram potência suficiente para iniciar o carregamento. A integração do algoritmo MPPT revelou-se eficaz na otimização da captação solar, enquanto a análise da autodescarga do supercondensador evidenciou limitações em aplicações prolongadas.
Este estudo contribui para o avanço na área de sistemas energéticos autónomos, propondo uma solução modular e eficiente, com potencial aplicação em equipamentos militares, sensores remotos e dispositivos IoT. São ainda apresentadas propostas para trabalhos futuros, visando a melhoria da conversão energética e a integração com tecnologias emergentes.
The growing dependence on external energy sources in military operations presents logistical and strategic challenges, particularly in remote or hostile environments. The need for autonomous, sustainable, and low-maintenance energy solutions has driven the development of energy harvesting systems capable of powering electronic devices continuously and efficiently. In this context, this dissertation proposes an analysis of the feasibility of an energy harvesting system based on the BQ25570 module, powered by low-power renewable sources such as solar panels, piezoelectric transducers, and Peltier cells. The study combines simulations using TINA-TI software with experimental testing, evaluating the system’s performance under both real and controlled conditions. The results show that among the sources tested, only the solar panel was able to effectively charge the supercapacitor, reaching the voltage thresholds required to activate the circuit. Although the thermal and piezoelectric sources generated voltage, they did not produce sufficient power to initiate charging. The integration of the MPPT algorithm proved effective in optimizing solar energy capture, while the analysis of the supercapacitor’s self-discharge highlighted limitations for long-term applications. This study contributes to the advancement of autonomous energy systems by proposing a modular and efficient solution with potential applications in military equipment, remote sensors, and IoT devices. Future work is suggested to improve energy conversion, reduce losses, and integrate emerging technologies such as smart textiles and low-power electronics. Energy harvesting, solar panel, Peltier and integrated circuit.
The growing dependence on external energy sources in military operations presents logistical and strategic challenges, particularly in remote or hostile environments. The need for autonomous, sustainable, and low-maintenance energy solutions has driven the development of energy harvesting systems capable of powering electronic devices continuously and efficiently. In this context, this dissertation proposes an analysis of the feasibility of an energy harvesting system based on the BQ25570 module, powered by low-power renewable sources such as solar panels, piezoelectric transducers, and Peltier cells. The study combines simulations using TINA-TI software with experimental testing, evaluating the system’s performance under both real and controlled conditions. The results show that among the sources tested, only the solar panel was able to effectively charge the supercapacitor, reaching the voltage thresholds required to activate the circuit. Although the thermal and piezoelectric sources generated voltage, they did not produce sufficient power to initiate charging. The integration of the MPPT algorithm proved effective in optimizing solar energy capture, while the analysis of the supercapacitor’s self-discharge highlighted limitations for long-term applications. This study contributes to the advancement of autonomous energy systems by proposing a modular and efficient solution with potential applications in military equipment, remote sensors, and IoT devices. Future work is suggested to improve energy conversion, reduce losses, and integrate emerging technologies such as smart textiles and low-power electronics. Energy harvesting, solar panel, Peltier and integrated circuit.
Description
Keywords
Pedagogical Context
Citation
Publisher
CC License
Without CC licence
