Repository logo
 
Publication

A neural network clustering algorithm for the ATLAS silicon pixel detector

dc.contributor.authorATLAS collaboration (2883 authors)
dc.contributor.authorAguilar-Saavedra, Juan Antonio
dc.contributor.authorAmor Dos Santos, Susana Patricia
dc.contributor.authorAnjos, Nuno
dc.contributor.authorAraque, Juan Pedro
dc.contributor.authorCantrill, Robert
dc.contributor.authorCarvalho, João
dc.contributor.authorCastro, Nuno Filipe
dc.contributor.authorConde Muiño, Patricia
dc.contributor.authorDa Cunha Sargedas De Sousa, Mario Jose
dc.contributor.authorDo Valle Wemans, André
dc.contributor.authorFiolhais, Miguel
dc.contributor.authorGalhardo, Bruno
dc.contributor.authorGomes, Agostinho
dc.contributor.authorGonçalo, Ricardo
dc.contributor.authorJorge, Pedro
dc.contributor.authorLopes, Lourenco
dc.contributor.authorMachado Miguens, Joana
dc.contributor.authorMaio, Amélia
dc.contributor.authorManeira, José
dc.contributor.authorMarques, Carlos
dc.contributor.authorOnofre, António
dc.contributor.authorPalma, Alberto
dc.contributor.authorPedro, Rute
dc.contributor.authorPina, João Antonio
dc.contributor.authorPinto, Belmiro
dc.contributor.authorSantos, Helena
dc.contributor.authorSaraiva, João
dc.contributor.authorSilva, José
dc.contributor.authorTavares Delgado, Ademar
dc.contributor.authorVeloso, Filipe
dc.contributor.authorWolters, Helmut
dc.date.accessioned2019-02-04T03:55:40Z
dc.date.available2019-02-04T03:55:40Z
dc.date.issued2014-09-15
dc.date.updated2019-02-04T03:55:40Z
dc.description.abstractA novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.
dc.description.versionPeer Reviewed
dc.identifierJINST 9 (2014) P09009 JINST 9 (2014) P09009; DOI 10.1088/1748-0221/9/09/P09009
dc.identifier.urihttp://dx.doi.org/10.1088/1748-0221/9/09/P09009
dc.identifier.urihttp://hdl.handle.net/10400.26/26623
dc.language.isoeng
dc.titleA neural network clustering algorithm for the ATLAS silicon pixel detector
dc.typejournal article
dspace.entity.typePublication
rcaap.rightsopenAccesspt
rcaap.typearticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Item-specific license agreed upon to submission
Description: