Repository logo
 
Publication

Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermography

dc.contributor.authorRicardo Vardasca, PhD, ASIS, FRPS
dc.date.accessioned2021-05-06T11:44:22Z
dc.date.available2021-05-06T11:44:22Z
dc.date.issued2021
dc.description.abstractAtypical body temperature values can be an indication of abnormal physiological processes associated with several health conditions. Infrared thermal (IRT) imaging is an innocuous imaging modality capable of capturing the natural thermal radiation emitted by the skin surface, which is connected to physiology-related pathological states. The implementation of artificial intelligence (AI) methods for interpretation of thermal data can be an interesting solution to supply a second opinion to physicians in a diagnostic/therapeutic assessment scenario. The aim of this work was to perform a systematic review and meta-analysis concerning different biomedical thermal applications in conjunction with machine learning strategies. The bibliographic search yielded 68 records for a qualitative synthesis and 34 for quantitative analysis. The results show potential for the implementation of IRT imaging with AI, but more work is needed to retrieve significant features and improve classification metrics.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.3390/app11020842pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.26/36410
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationAssociate Laboratory of Energy, Transports and Aeronautics
dc.subjectbiomedicalpt_PT
dc.subjectclassificationpt_PT
dc.subjectinfrared thermal imagingpt_PT
dc.subjectmachine learningpt_PT
dc.subjectskin cancerpt_PT
dc.subjectthermographypt_PT
dc.titleMeta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermographypt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleAssociate Laboratory of Energy, Transports and Aeronautics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50022%2F2020/PT
oaire.citation.issue2pt_PT
oaire.citation.startPage842pt_PT
oaire.citation.titleApplied Sciencespt_PT
oaire.citation.volume11pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameVardasca
person.givenNameRicardo
person.identifierR-001-FFR
person.identifier.ciencia-id9F17-FD5F-E767
person.identifier.orcid0000-0003-4217-2882
person.identifier.ridJ-4948-2013
person.identifier.scopus-author-id24491279800
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication33602b11-6c79-40f9-a768-d7c792bc2d57
relation.isAuthorOfPublication.latestForDiscovery33602b11-6c79-40f9-a768-d7c792bc2d57
relation.isProjectOfPublication2dcb6d97-160c-42d6-a46b-43a270582ca8
relation.isProjectOfPublication.latestForDiscovery2dcb6d97-160c-42d6-a46b-43a270582ca8

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-11-00842-v2.pdf
Size:
4.42 MB
Format:
Adobe Portable Document Format