Repository logo
 
Publication

Denoising using local projective subspace methods

dc.contributor.authorGruber, P.
dc.contributor.authorStadlthanner, K.
dc.contributor.authorBöhm, M.
dc.contributor.authorTheis, F.J.
dc.contributor.authorLang, E.W.
dc.contributor.authorTomé, A.M.
dc.contributor.authorTeixeira, Ana
dc.contributor.authorPuntonet, C.G.
dc.contributor.authorGorriz Saéz, J.M.
dc.date.accessioned2023-10-20T12:22:40Z
dc.date.available2023-10-20T12:22:40Z
dc.date.issued2006
dc.description.abstractIn this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE) and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high-dimensional feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of kurtosis or the variance of autocorrelations depending on the statistical nature of the signal. The algorithm proposed can be applied favorably to the problem of denoising multi-dimensional data. Another projective subspace denoising method using delayed coordinates has been proposed recently with the algorithm dAMUSE. It combines the solution of blind source separation problems with denoising efforts in an elegant way and proofs to be very efficient and fast. Finally, KPCA represents a non-linear projective subspace method that is well suited for denoising also. Besides illustrative applications to toy examples and images, we provide an application of all algorithms considered to the analysis of protein NMR spectra.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.neucom.2005.12.025pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.26/47371
dc.language.isoengpt_PT
dc.publisherElsevierpt_PT
dc.subjectLocal ICApt_PT
dc.subjectDelayed AMUSEpt_PT
dc.subjectProjective subspace denoising embeddingpt_PT
dc.titleDenoising using local projective subspace methodspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlace[Netherlands]pt_PT
oaire.citation.endPage1501pt_PT
oaire.citation.issue13-15pt_PT
oaire.citation.startPage1485pt_PT
oaire.citation.titleNeurocomputingpt_PT
oaire.citation.volume69pt_PT
person.familyNameTeixeira
person.givenNameAna
person.identifier.ciencia-idD619-A151-8BE2
person.identifier.orcid0000-0002-8120-0148
person.identifier.ridA-3100-2014
person.identifier.scopus-author-id7202385348
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationc1ff686d-c3d3-4658-96c6-a1f62a52777a
relation.isAuthorOfPublication.latestForDiscoveryc1ff686d-c3d3-4658-96c6-a1f62a52777a

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Denoising using local projective subspace.pdf
Size:
711.21 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Item-specific license agreed upon to submission
Description: