Repository logo
 
Publication

Unsupervised feature extraction via kernel subspace techniques

dc.contributor.authorTeixeira, A.R.
dc.contributor.authorTomé, A.M.
dc.contributor.authorLang, E.W.
dc.date.accessioned2023-10-23T11:23:14Z
dc.date.available2023-10-23T11:23:14Z
dc.date.issued2011
dc.description.abstractThis paper provides a new insight into unsupervised feature extraction techniques based on kernel subspace models. The data projected onto kernel subspace models are new data representations which might be better suited for classification. The kernel subspace models are always described exploiting the dual form for the basis vectors which requires that the training data must be available even during the test phase. By exploiting an incomplete Cholesky decomposition of the kernel matrix, a computationally less demanding implementation is proposed. Online benchmark data sets allow the evaluation of these feature extraction methods comparing the performance of two classifiers which both have as input either the raw data or the new representations.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.neucom.2010.11.011pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.26/47400
dc.language.isoengpt_PT
dc.publisher[IADIS]pt_PT
dc.subjectKernel PCApt_PT
dc.subjectFeature extraction and low-rank decompositionspt_PT
dc.titleUnsupervised feature extraction via kernel subspace techniquespt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlace[Lisboa]pt_PT
oaire.citation.endPage830pt_PT
oaire.citation.issue5pt_PT
oaire.citation.startPage820pt_PT
oaire.citation.titleNeurocomputingpt_PT
oaire.citation.volume74pt_PT
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
USABILITY EVALUATION OF PLAYSTATION MOVE MOTION CONTROLER.pdf
Size:
845.48 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Item-specific license agreed upon to submission
Description: