Name: | Description: | Size: | Format: | |
---|---|---|---|---|
274.38 KB | Adobe PDF |
Authors
Abstract(s)
O trabalho apresentado neste Relatório de Estágio foca-se no desenvolvimento de um
sistema inovador de eletroestimulação concebido para prevenir a atrofia muscular,
especialmente durante a imobilização prolongada de membros, e para ajudar
pacientes com marchas patológicas. Os dispositivos tradicionais destinados a este fim
são frequentemente volumosos, desconfortáveis e carecem de integração com
tecnologia moderna, o que impacta negativamente a vida dos pacientes. Para abordar
estas questões, foi desenvolvido um circuito de eletroestimulação personalizável, que
incorpora elétrodos localizados numa estrutura têxtil controlados através de uma
aplicação móvel.
A secção de hardware do sistema inclui um microcontrolador, especificamente o
ESP32-C3 da Seeed Studio, escolhido pela sua pequena dimensão, funcionalidades
avançadas e elevada velocidade de processamento. Um circuito conversor boost
utilizando um MOSFET foi selecionado pela sua estabilidade e eficiência na entrega
da tensão necessária, em comparação com a utilização de um transístor NPN e o
circuito integrado XL6009. Um circuito integrado, o DRV8871, foi escolhido para o
circuito de controlo devido à sua capacidade de fornecer estímulos bifásicos e devido
a possuir várias funcionalidades de segurança, como proteção contra sobrecorrente,
subtensão e sobreaquecimento, quando comparado com o circuito controlado por um
MOSFET.
O software foi desenvolvido em duas partes, o programa do microcontrolador, que gere
o hardware e a conectividade Bluetooth, com base numa arquitetura FreeRTOS, e uma
aplicação móvel baseada em Flutter, que permite aos utilizadores controlar facilmente
o dispositivo através do protocolo Bluetooth.
O trabalho dedicado aos têxteis funcionais focou-se na seleção de materiais
confortáveis e funcionais como os tecidos DriRelease e Coolmax, e na comparação de
diferentes elétrodos têxteis, em malha condutora ou bordados. Os elétrodos em
malha mostraram-se superiores em conforto e facilidade de integração em
comparação com os elétrodos bordados pelo que foram aplicados na solução final.
A solução embebida envolveu a conceção de uma caixa protetora para os circuitos,
fabricada em PLA, e uma estrutura flexível em TPU para fixar o dispositivo ao membro
em tratamento. A solução embebida foi fabricada utilizando impressão 3D, corte a
laser, termocompressão e molas de metal para fixar os componentes.
Em resumo, este projeto criou com sucesso um dispositivo de eletroestimulação versátil e fácil de usar, adaptado às necessidades individuais dos pacientes. Embora a
potência de saída tenha sido limitada pela utilização de componentes comuns, o
sistema demonstrou potencial para uma maior personalização. A solução têxtil e
embebida demonstrou as tecnologias mais notáveis e recentes no ambiente têxtil,
como têxteis inteligentes, elétrodos termocompressados feitos com tecido condutor e
impressão 3D diretamente no tecido, tornando a solução confortável, inovadora e
personalizável.
Juntamente com este relatório, foi eleborado um artigo científico, que foi submetido a
uma conferência da especialidade. A solução proposta acrescenta uma valiosa
contribuição para a investigação aplicada na área da electroestimulação, ao criar uma
base para o desenvolvimento de um dispositivo têxtil inteligente para
eletroestimulação, que pode ajudar na reabilitação e recuperação do sistema
musculoesquelético, assim como auxiliar pacientes com marcha patológica quando
integrado com outros sistemas.
The work presented in this Internship Report focuses on the development of an innovative electrostimulation system designed to prevent muscle atrophy, particularly during prolonged immobilization of limbs, and assist patients with pathological gaits. Traditional devices for this purpose are often bulky and uncomfortable, and lack integration with modern technology, which impacts negatively the patient’s lives. To address these issues, a customizable electrostimulation circuit was developed, incorporating localized electrodes within a textile structure, and controlled via a mobile app. The hardware component of the system includes a microcontroller, specifically the ESP32-C3 by Seeed Studio, chosen for its small form factor, advanced features and fast processing speeds. A boost converter circuit using a MOSFET was selected for its stability and efficiency in delivering the required voltage when compared with an NPN transistor and the XL6009 IC. A DRV8871 IC was chosen for the control circuit, due to its ability to provide biphasic stimuli and several safety features such as overcurrent, undervoltage and overtemperature protection. The software was developed in two parts, the microcontroller program, which manages the hardware and Bluetooth connectivity based on a FreeRTOS architecture and a Flutter-based mobile app, which allows users to easily control the device via the Bluetooth protocol. The work on textiles focused on selecting comfortable and functional materials, such as DriRelease fabric as a textile base and Coolmax technology as a textile cushion, to elevate the electrode and compare different textile electrodes. Fabric electrodes were found to be superior in comfort and ease of integration than embroidery electrodes. The embedded solution involved designing a protective enclosure for the circuitry made with PLA and a flexible TPU structure to secure the device to the limb. The embedded solution was manufactured using 3D-printing, laser cutting, heat-pressing and metal snaps to attach the components. In summary, this project successfully created a versatile, user-friendly electrostimulation device tailored to individual patient needs. Although the power output was limited by the use of common components, the system demonstrated potential for further customization. The textile and embedded solution demonstrated the most remarkable and newest technologies in the textile environment, such as smart textiles, pressed electrodes made with conductive fabric and 3D-printing directly on the textile, turning the solution comfortable, innovative and customisable. Together with this report, a research paper was written and has been submitted to a specialized conference. The proposed solution added a valuable contribution to applied research in the field of electrostimulation, by creating a basis where a smart textile device for electrostimulation can be developed, that can help the rehabilitation and recovery of the musculoskeletal system, as well as helping patients with pathological gaits when embedded with other systems.
The work presented in this Internship Report focuses on the development of an innovative electrostimulation system designed to prevent muscle atrophy, particularly during prolonged immobilization of limbs, and assist patients with pathological gaits. Traditional devices for this purpose are often bulky and uncomfortable, and lack integration with modern technology, which impacts negatively the patient’s lives. To address these issues, a customizable electrostimulation circuit was developed, incorporating localized electrodes within a textile structure, and controlled via a mobile app. The hardware component of the system includes a microcontroller, specifically the ESP32-C3 by Seeed Studio, chosen for its small form factor, advanced features and fast processing speeds. A boost converter circuit using a MOSFET was selected for its stability and efficiency in delivering the required voltage when compared with an NPN transistor and the XL6009 IC. A DRV8871 IC was chosen for the control circuit, due to its ability to provide biphasic stimuli and several safety features such as overcurrent, undervoltage and overtemperature protection. The software was developed in two parts, the microcontroller program, which manages the hardware and Bluetooth connectivity based on a FreeRTOS architecture and a Flutter-based mobile app, which allows users to easily control the device via the Bluetooth protocol. The work on textiles focused on selecting comfortable and functional materials, such as DriRelease fabric as a textile base and Coolmax technology as a textile cushion, to elevate the electrode and compare different textile electrodes. Fabric electrodes were found to be superior in comfort and ease of integration than embroidery electrodes. The embedded solution involved designing a protective enclosure for the circuitry made with PLA and a flexible TPU structure to secure the device to the limb. The embedded solution was manufactured using 3D-printing, laser cutting, heat-pressing and metal snaps to attach the components. In summary, this project successfully created a versatile, user-friendly electrostimulation device tailored to individual patient needs. Although the power output was limited by the use of common components, the system demonstrated potential for further customization. The textile and embedded solution demonstrated the most remarkable and newest technologies in the textile environment, such as smart textiles, pressed electrodes made with conductive fabric and 3D-printing directly on the textile, turning the solution comfortable, innovative and customisable. Together with this report, a research paper was written and has been submitted to a specialized conference. The proposed solution added a valuable contribution to applied research in the field of electrostimulation, by creating a basis where a smart textile device for electrostimulation can be developed, that can help the rehabilitation and recovery of the musculoskeletal system, as well as helping patients with pathological gaits when embedded with other systems.
Description
Keywords
Eletroestimulação Têxteis inteligentes Dispositivo vestível Tecnologia de reabilitação Dispositivo médico ativo