Repository logo
 
Publication

Optimizing Herbicide Use in Fodder Crops with Low-Cost Remote Sensing and Variable Rate Technology

datacite.subject.fosCiências Agrárias
datacite.subject.sdg04:Educação de Qualidade
datacite.subject.sdg02:Erradicar a Fome
dc.contributor.authorConceição, Luís Alcinoen_US
dc.contributor.authorSilva, Luísen_US
dc.contributor.authorDias, Susanaen_US
dc.contributor.authorMaçãs, Benvindoen_US
dc.contributor.authorSousa, Adélia M. O.en_US
dc.contributor.authorFiorentino, Costanzaen_US
dc.contributor.authorD’Antonio, Paolaen_US
dc.contributor.authorBarbosa, Sofiaen_US
dc.contributor.authorFaugno, Salvatoreen_US
dc.date.accessioned2025-12-12T15:49:58Z
dc.date.available2025-12-12T15:49:58Z
dc.date.issued2025-02-13en_US
dc.date.updated2025-12-02T15:54:50Z
dc.description.abstractThe current Common Agriculture Policy (CAP) foresees a reduction of 50% in the use of herbicides by 2030. This study investigates the potential of integrating remote sensing with a low-cost RGB sensor and variable-rate technology (VRT) to optimize herbicide application in a ryegrass (Lolium multiflorum Lam.) fodder crop. The trial was conducted on three 7.5-hectare plots, comparing a variable-rate application (VRA) of herbicide guided by a prescription map generated from segmented digital images, with a fixed-rate application (FRA) and a control (no herbicide applied). The weed population and crop biomass were assessed to evaluate the efficiency of the proposed method. Results revealed that the VRA method reduced herbicide usage by 30% (0.22 l ha−1 ) compared to the FRA method, while maintaining comparable crop production. These findings demonstrate that smart weed management techniques can contribute to the CAP’s sustainability goals by reducing chemical inputs and promoting efficient crop production. Future research will focus on improving weed recognition accuracy and expanding this methodology to other cropping systems.eng
dc.description.versionN/A
dc.identifier.doi10.3390/app15041979en_US
dc.identifier.issn2076-3417en_US
dc.identifier.slugcv-prod-4382472
dc.identifier.urihttp://hdl.handle.net/10400.26/60376
dc.language.isoeng
dc.peerreviewedyes
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectmediterranean climate
dc.subjectlow-cost sensor
dc.subjectspatial analysis
dc.subjectmachine learning
dc.subjectRGB
dc.titleOptimizing Herbicide Use in Fodder Crops with Low-Cost Remote Sensing and Variable Rate Technologyen_US
dc.typeresearch articleen_US
dspace.entity.typePublication
oaire.citation.issue4en_US
oaire.citation.startPage1979
oaire.citation.titleApplied Sciencesen_US
oaire.citation.volume15en_US
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
rcaap.cv.cienciaid9D12-7A76-F191 | Luís Miguel Roque da Silva
rcaap.rightsopenAccessen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-15-01979-v3.pdf
Size:
3.93 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections