Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • Study of the requirements of an autonomous system for surface water quality monitoring
    Publication . Barros, F.M.; Granchinho, Pedro; Ferreira, Carlos; Neves, Pedro; Magalhães, Hugo; Santos, Luis; Lopes, Brígida; Marques, João; Pinho, Henrique J. O.; Mourato, S.; Martins, A.
    In recent years, there has been increasing awareness of the preservation, protection and sustainable use of natural resources. Water resources, being one of the most important natural resources, face major threats due to contamination by pollutants of various types and origins. Maintaining the quality of water resources requires more robust, reliable and more frequent monitoring than traditional techniques of data collection based on sporadic, discontinuous and manual processes. The management of large geographical areas, the insufficient spatiotemporal discretization of the values of samples collected by traditional processes and the unpredictability of natural phenomena, require a new approach to data collection procedures. This article, which is the result of ongoing research, defines the technical requirements and technologies used in a continuous and regular monitoring of surface water quality in freshwater systems, whose data acquisition system helps to identify the sources of pollution and the contaminants flow along the waterways. The design of a versatile real-time water quality monitoring system, which, due to its environmental constraints should be based on renewable energies and wireless transfer of energy, will contribute to improve the management and effective protection of water resources.
  • Remote Monitoring of Energy-autonomous Constructed Wetlands
    Publication . Lopes, Simão; Barros, F.M.; Ferreira, Carlos; Mateus, D. M. R.; Matos, Pedro; Neves, Pedro; Pinho, Henrique J. O.
    Constructed Wetlands systems (CW) are nature-based and sustainable technology for treating wastewater, contributing to the management and protection of freshwater resources. Moreover, CW can contribute to valorizing waste materials, producing reclaimed water for diverse applications, and producing plant biomass that can be material and energetically valorized. Because CW efficiency depends on several mechanisms such as physical, chemical, and biological, its real-time monitoring is essential to provide a better use of this technology. This work describes a smart framework for monitoring CW based on IoT devices and sensors, and data science tools providing real-time processing of gathered water quality parameters and environmental variables. Furthermore, the framework manages renewable energy sources to provide the required energy for CW operation and monitoring. Data collected from the sensor network show significant daily variations in water quality parameters. The future processing of these data can provide the development of models to improve the efficiency of the CW.
  • Towards a Practical and Cost-Effective Water Monitoring System
    Publication . Marques, João; Lopes, Brígida; Ferreira, Carlos; Pinho, Henrique J. O.; Barros, Manuel; Granchinho, Pedro; Neves, Pedro; Camarinha-Matos, L.; Almeida, R.; Oliveira, J.
    In recent years, there has been increasing awareness of the preservation, protection and sustainable use of natural resources. Water resources, being one of the most important, face major threats due to contamination by pollutants of various types and origins. Maintaining the quality of water resources requires more robust, reliable and more frequent monitoring than traditional data collection techniques based on manual sampling methods. This article, which is the result of ongoing research, proposes a practical and cost-effective solution for a surface water monitoring system, using a robotics platform and cloud services. The proposed solution allows for scalability and will accommodate a wide range of end-user specifications. To allow for continuous operation in longer activities, the design of a versatile real-time water quality monitoring system should also take into consideration the question of its energy requirements and self-sufficiency.