Browsing by Issue Date, starting with "2014-06-30"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Comprehensive measurements of $t$-channel single top-quark production cross sections at $\sqrt{s} = 7$ TeV with the ATLAS detectorPublication . ATLAS collaboration (2888 authors); Aguilar-Saavedra, Juan Antonio; Amor Dos Santos, Susana Patricia; Anjos, Nuno; Araque, Juan Pedro; Cantrill, Robert; Carvalho, João; Castro, Nuno Filipe; Conde Muiño, Patricia; Da Cunha Sargedas De Sousa, Mario Jose; Do Valle Wemans, André; Fiolhais, Miguel; Galhardo, Bruno; Gomes, Agostinho; Gonçalo, Ricardo; Jorge, Pedro; Lopes, Lourenco; Machado Miguens, Joana; Maio, Amélia; Maneira, José; Marques, Carlos; Onofre, António; Palma, Alberto; Pedro, Rute; Pina, João Antonio; Pinto, Belmiro; Santos, Helena; Saraiva, João; Silva, José; Tavares Delgado, Ademar; Veloso, Filipe; Wolters, HelmutThis article presents measurements of the $t$-channel single top-quark ($t$) and top-antiquark ($\bar{t}$) total production cross sections $\sigma(tq)$ and $\sigma(\bar{t}q)$, their ratio $R_{t}=\sigma(tq)/\sigma(\bar{t}q)$, and a measurement of the inclusive production cross section $\sigma(tq + \bar{t}q)$ in proton--proton collisions at $\sqrt{s} = 7$ TeV at the LHC. Differential cross sections for the $tq$ and $\bar{t}q$ processes are measured as a function of the transverse momentum and the absolute value of the rapidity of $t$ and $\bar{t}$, respectively. The analyzed data set was recorded with the ATLAS detector and corresponds to an integrated luminosity of 4.59 fb$^{-1}$. Selected events contain one charged lepton, large missing transverse momentum, and two or three jets. The cross sections are measured by performing a binned maximum-likelihood fit to the output distributions of neural networks. The resulting measurements are $\sigma(tq)= 46\pm 6\; \mathrm{pb}$, $\sigma(\bar{t}q)= 23 \pm 4\; \mathrm{pb}$, $R_{t}=2.04\pm 0.18$, and $\sigma(tq + \bar{t}q)= 68 \pm 8\; \mathrm{pb}$, consistent with the Standard Model expectation. The uncertainty on the measured cross sections is dominated by systematic uncertainties, while the uncertainty on $R_{t}$ is mainly statistical. Using the ratio of $\sigma(tq + \bar{t}q)$ to its theoretical prediction, and assuming that the top-quark-related CKM matrix elements obey the relation $|V_{tb}|\gg |V_{ts}|, |V_{td}|$, we determine $|V_{tb}|=1.02 \pm 0.07$.
