Browsing by Author "Vicente, R"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Local Breast Microbiota: A “New” Player on the BlockPublication . Vitorino, M; Alpuim Costa, D; Vicente, R; Caleça, T; Santos, CThe tumour microenvironment (TME) comprises a complex ecosystem of different cell types, including immune cells, cells of the vasculature and lymphatic system, cancer-associated fibroblasts, pericytes, and adipocytes. Cancer proliferation, invasion, metastasis, drug resistance and immune escape are all influenced by the dynamic interaction between cancer cells and TME. Microbes, such as bacteria, fungi, viruses, archaea and protists, found within tumour tissues, constitute the intratumour microbiota, which is tumour type-specific and distinct among patients with different clinical outcomes. Growing evidence reveals a significant relevance of local microbiota in the colon, liver, breast, lung, oral cavity and pancreas carcinogenesis. Moreover, there is a growing interest in the tumour immune microenvironment (TIME) pointed out in several cross-sectional studies on the correlation between microbiota and TME. It is now known that microorganisms have the capacity to change the density and function of anticancer and suppressive immune cells, enabling the promotion of an inflammatory environment. As immunotherapy (such as immune checkpoint inhibitors) is becoming a promising therapy using TIME as a therapeutic target, the analysis and comprehension of local microbiota and its modulating strategies can help improve cancer treatments.
- Mutation Patterns in Portuguese Families with Hereditary Breast and Ovarian Cancer SyndromePublication . Vicente, R; Alpuim Costa, D; Vitorino, M; Mendes, AD; Santos, C; Fontes-Sousa, MGermline pathogenic variants in the Breast Cancer Genes 1 (BRCA1) and 2 (BRCA2) are responsible for Hereditary Breast and Ovarian Cancer (HBOC) syndrome. Genetic susceptibility to breast cancer accounts for 5-10% of all cases, phenotypically presenting with characteristics such as an autosomal dominant inheritance pattern, earlier age of onset, bilateral tumours, male breast cancer, and ovarian tumours, among others. BRCA2 pathogenic variant is usually associated with other cancers such as melanoma, prostate, and pancreatic cancers. Many rearrangements of different mutations were found in both genes, with some ethnic groups having higher frequencies of specific mutations due to founder effects. Despite the heterogeneity of germline BRCA1/BRCA2 mutations in Portuguese breast or/and ovarian cancer families, the first described founder mutation in the BRCA2 gene (c.156_157insAlu) and two other variants in the BRCA1 gene (c.3331_3334del and c.2037delinsCC) contribute to about 50% of all pathogenic mutations. Furthermore, the families with the BRCA1 c.3331_3334del or the c.2037delinsCC mutations share a common haplotype, suggesting that these may also be founder mutations in the Portuguese population. Identifying specific and recurrent/founder mutations plays an important role in increasing the efficiency of genetic testing since it allows the use of more specific, cheaper and faster strategies to screen HBOC families. Therefore, this review aims to describe the mutational rearrangements of founder mutations and evaluate their impact on the genetic testing criteria for HBOC families of Portuguese ancestry.