Browsing by Author "Jubete, Elena"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Construction of effective disposable biosensors for point of care testing of nitritePublication . Monteiro, Tiago; Rodrigues, Patrícia R.; Gonçalves, Ana Luisa; Moura, José J.G.; Jubete, Elena; Añorga, Larraitz; Piknova, Barbora Piknova; Schechter, Alan N.; Silveira, Célia M.; Almeida, M. Gabriela"In this paper we aim to demonstrate, as a proof-of-concept, the feasibility of the mass production of effective point of care tests for nitrite quantification in environmental, food and clinical samples. Following our previous work on the development of third generation electrochemical biosensors based on the ammonia forming nitrite reductase (ccNiR), herein we reduced the size of the electrodes’ system to a miniaturized format, solved the problem of oxygen interference and performed simple quantification assays in real samples. In particular, carbon paste screen printed electrodes (SPE) were coated with a ccNiR/carbon ink composite homogenized in organic solvents and cured at low temperatures. The biocompatibility of these chemical and thermal treatments was evaluated by cyclic voltammetry showing that the catalytic performance was higher with the combination acetone and a 40 °C curing temperature. The successful incorporation of the protein in the carbon ink/solvent composite, while remaining catalytically competent, attests for ccNiR’s robustness and suitability for application in screen printed based biosensors. Because the direct electrochemical reduction of molecular oxygen occurs when electroanalytical measurements are performed at the negative potentials required to activate ccNiR (ca. -0.4 V vs Ag/AgCl), an oxygen scavenging system based on the coupling of glucose oxidase and catalase activities was successfully used. This enabled the quantification of nitrite in different samples (milk, water, plasma and urine) in a straightforward way and with small error (1 – 6%). The sensitivity of the biosensor towards nitrite reduction under optimized conditions was 0.55 A M-1 cm-2 with a linear response range 0.7 – 370 μM."
- A quasi-reagentless point-of-care test for nitrite and unaffected by oxygen and cyanidePublication . Monteiro, Tiago; Gomes, Sara; Jubete, Elena; Añorga, Larraitz; Silveira, Célia M.; Almeida, Maria GabrielaThe ubiquitous nitrite is a major analyte in the management of human health and environmental risks. The current analytical methods are complex techniques that do not fulfil the need for simple, robust and low-cost tools for on-site monitoring. Electrochemical reductase-based biosensors are presented as a powerful alternative, due to their good analytical performance and miniaturization potential. However, their real-world application is limited by the need of anoxic working conditions, and the standard oxygen removal strategies are incompatible with point-of-care measurements. Instead, a bienzymatic oxygen scavenger system comprising glucose oxidase and catalase can be used to promote anoxic conditions in aired environments. Herein, carbon screen-printed electrodes were modified with cytochrome c nitrite reductase together with glucose oxidase and catalase, so that nitrite cathodic detection could be performed by cyclic voltammetry under ambient air. The resulting biosensor displayed good linear response to the analyte (2–200 µM, sensitivity of 326 ± 5 mA M−1 cm−2 at −0.8 V; 0.8–150 µM, sensitivity of 511 ± 11 mA M−1 cm−2 at −0.5 V), while being free from oxygen interference and stable up to 1 month. Furthermore, the biosensor’s catalytic response was unaffected by the presence of cyanide, a well-known inhibitor of heme-enzymes.