Browsing by Author "Fernandes, A. C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Effect of tetracaine on DMPC and DMPC + cholesterol biomembrane models: Liposomes and monolayersPublication . Serro, A. P.; Galante, R.; Kozica, A.; Paradiso, P.; Gonçalves da Silva, A.M.P.S.; Luzyanina, K. V.; Fernandes, A. C.; Saramago, B."Different types of lipid bilayers/monolayers have been used to simulate the cellular membranes in the investigation of the interactions between drugs and cells. However, to our knowledge, very few studies focused on the influence of the chosen membrane model upon the obtained results. The main objective of this work is to understand how do the nature and immobilization state of the biomembrane models influence the effect of the local anaesthetic tetracaine (TTC) upon the lipid membranes. The interaction of TTC with different biomembrane models of dimyristoylphosphatidylcholine (DMPC) with and without cholesterol (CHOL) was investigated through several techniques. A quartz crystal microbalance with dissipation (QCM-D) was used to study the effect on immobilized liposomes, while phosphorus nuclear magnetic resonance (31P-NMR) and differential scanning calorimetry (DSC) were applied to liposomes in suspension. The effect of TTC on Langmuir monolayers of lipids was also investigated through surface pressure-area measurements at the air-water interface. The general conclusion was that TTC has a fluidizing effect on the lipid membranes and, above certain concentrations, induced membrane swelling or even solubilization. However, different models led to variable responses to the TTC action. The intensity of the disordering effect caused by TTC increased in the following order: supported liposomes < liposomes in solution < Langmuir monolayers. This means that extrapolation of the results obtain in in vitro studies of the lipid/anaesthetic interactions to in vivo conditions should be done carefully."
- The effect of albumin and cholesterol on the biotribological behavior of hydrogels for contact lensesPublication . Silva, D.; Fernandes, A. C.; Nunes, T. G.; Colaço, R.; Serro, A. P.The irritation/discomfort associated with the use of contact lenses (CLs) is often related to the eyelid-lens friction. Although the use of such devices is widespread, the information about the influence of the lacrimal fluid biomolecules on the tribological behavior of the CLs hydrogels is scarce. In this work, we investigated the effect of the presence of albumin and cholesterol in the lubricant medium, on the frictional response of two model hydrogels for CLs: a hydroxyethylmethacrylate based hydrogel, HEMA/PVP, and a silicone based one, TRIS/NVP/HEMA. Tribological experiments were done in a nanotribometer, in water and in the presence of solutions of those biomolecules. It was observed a significant increase of the friction coefficient (μ) for HEMA/PVP when the lubricant contains cholesterol, and for TRIS/NVP/HEMA when it contains albumin. Solid-state NMR and DSC analysis revealed that HEMA/PVP hydrated in cholesterol solution has a lower amount of free and loosely bound water than the hydrogel hydrated in water. Therefore, a smaller amount of water shall be released into the contact region during the friction tests with cholesterol solution, leading to a thinner film in the contact zone, and consequently to a higher μ. Concerning TRIS/NVP/HEMA, QCM-D studies showed that this hydrogel adsorbs less albumin than HEMA/PVP and that the formed film is more rigid, which can explain the increase of μ. The obtained results contribute to understand the influence of lacrimal fluid composition on the tribological behavior of CLs materials, being relevant for the selection and optimization of these devices.