Browsing by Author "Almeida, M. Catarina M.D. de"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Efficient P(3HB) extraction from Burkholderia sacchari cells using non-chlorinated solventsPublication . Rosengart, Alessandro; Cesário, M.Teresa; Almeida, M. Catarina M.D. de; Raposo, Rodrigo S.; Espert, Ana; Díaz de Apodaca, Elena; Fonseca, M. Manuela R. da"A technique using safer, non-chlorinated organic solvents for the extraction of poly-3-hydroxybutyrate (P(3HB)) from bacterial cells was developed, aiming to attain high recovery yields and purities. Some solvents were selected from the GlaxoSmithKline guide as sustainable industrial solvents and the solubility of P(3HB) calculated using predictive equations from literature. Based on the calculated solubility values, anisole, cyclohexanone and phenetole were tested as extraction solvents and the relevant process variables (extraction temperature, extraction time and mass of cells/solvent volume ratio) were addressed. Polymer recovery yields of 97% and 93% were obtained with anisole and cyclohexanone, respectively, at 120–130 °C using a cell/solvent ratio of 1.5% (w/v). Maximum polymer purities using these experimental conditions were 98% for both solvents. The recovery yield and the polymer purity attained with chloroform (reference solvent) were 96 and 98%, respectively. Higher cell/solvent ratios of 6.0% (w/v) showed slightly lower recovery yields and purities. The average molecular weight and the thermal properties of the polymers extracted with the alternative solvents were fully comparable to those of the polymers obtained by chloroform extraction, demonstrating that the applied conditions did not significantly alter the properties of the extracted P(3HB)."
- Polyhydroxyalkanoates: waste glycerol upgrade into electrospunfibrous scaffolds for stem cells culturePublication . Canadas, Raphaël F.; Cavalheiro, João M.B.T.; Guerreiro, João D.T.; Almeida, M. Catarina M.D. de; Pollet, Eric; Silva, Cláudia Lobato da; Fonseca, M.M.R. da; Ferreira, Frederico Castelo"This integrated study shows that waste glycerol can be bio-valorized by the fabrication of electrospun scaffolds for stem cells. Human mesenchymal stem cells (hMSC) provide an interesting model of regenerating cells because of their ability to differentiate into osteo-, chrondro-, adipo- and myogenic lineages. Moreover, hMSC have modulatory properties with potential on treatment of immunologic diseases. Electrospun fiber meshes offer tunable mechanical and physical properties that can mimic the structure of the native extracellular matrix, the natural environment where cells inhabit. Following a biorefinery approach, crude glycerol directly recovered from a biodiesel post-reaction stream was fed as major C source to Cupriavidus necator DSM 545 to produce polyhydroxyalkanoates at polymer titers of 9–25 g/L. Two of the P(3HB-4HB-3HV) terpolymers produced, one containing 11.4% 4HB and 3.5% 3HV and the other containing 35.6% 4HB and 3.4% 3HV, were electrospun into fibers of average diameters of 600 and 1400 nm, respectively. hMSC were cultured for 7 days in both fiber meshes, showing their ability to support stem cell growth at acceptable proliferation levels. Comparative results clearly demonstrate that scaffold topology is critical, with electrospun PHA fibers succeeding on the support of significant cell adhesion and proliferation, where planar PHA films failed."