AM - CET - EE - Dissertação de Mestrado
Permanent URI for this collection
Browse
Browsing AM - CET - EE - Dissertação de Mestrado by Author "Dias, Joel Augusto Joanaz D’Assunção"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Classificação automática de zonas verdes para fins de cartografiaPublication . Dias, Joel Augusto Joanaz D’Assunção; Dias, José Manuel Bioucas; Silva, José Silvestre Serra daEsta dissertação de mestrado expõe um estudo com o objetivo de discriminar os tipos de vegetação. Uma forma de se obter informações sobre o terreno é através da cartografia, sendo a fotogrametria aérea uma das técnicas mais utilizadas. O objectivo principal deste estudo é o desenvolvimento de uma ferramenta que permita processar fotografias aéreas na banda do visível e que discirna e classifique os diferentes tipos de vegetação. A metodologia adotada é constituida por tres fases principais: extração de características, seleção de características e classificação de imagem recorrendo a dois classificadores, o K-vizinhos mais próximos e a maquina de suporte vetorial. Na primeira fase são extraídas características estatísticas e de textura; na segunda fase implementa-se uma técnica de seleção de características relevantes. A última fase divide-se na otimização dos parâmetros de entrada dos classificadores e posterior classificação das imagens.Não foi possivel a utilização das oito classes pré-definidas devido à similaridade entre algumas delas, pelo que se procedeu à fusão de algumas, resultando em quatro novas classes. Realizou-se a classificação das imagens como as novas classes e comparou-se o desempenho dos dois classificadores. Verificou-se que o melhor classificador é a máquina de suporte vetorial utilizando a função de núcleo RBF apresentando 89,9% de classificações corretas. Testou-se a influência do seletor de características e concluiu-se que este conduziu a um aumento médio de 8,25%no desempenho dos classificadores. Conclui-se que os melhores resultados alcançados foram com 10 características para o K-vizinhos mais próximos e com 20 características para o Support Vectorial Machine.