Repository logo
 
Loading...
Thumbnail Image
Publication

Experimental evaluation of big data querying tools

Use this identifier to reference this record.
Name:Description:Size:Format: 
Mario-Miguel-Lucas-Rodrigues.pdf3.7 MBAdobe PDF Download

Abstract(s)

Nos últimos anos, o termo Big Data tornou-se um tópico bastanta debatido em várias áreas de negócio. Um dos principais desafios relacionados com este conceito é como lidar com o enorme volume e variedade de dados de forma eficiente. Devido à notória complexidade e volume de dados associados ao conceito de Big Data, são necessários mecanismos de consulta eficientes para fins de análise de dados. Motivado pelo rápido desenvolvimento de ferramentas e frameworks para Big Data, há muita discussão sobre ferramentas de consulta e, mais especificamente, quais são as mais apropriadas para necessidades analíticas específica. Esta dissertação descreve e compara as principais características e arquiteturas das seguintes conhecidas ferramentas analíticas para Big Data: Drill, HAWQ, Hive, Impala, Presto e Spark. Para testar o desempenho dessas ferramentas analíticas para Big Data, descrevemos também o processo de preparação, configuração e administração de um Cluster Hadoop para que possamos instalar e utilizar essas ferramentas, tendo um ambiente capaz de avaliar seu desempenho e identificar quais cenários mais adequados à sua utilização. Para realizar esta avaliação, utilizamos os benchmarks TPC-H e TPC-DS, onde os resultados mostraram que as ferramentas de processamento em memória como HAWQ, Impala e Presto apresentam melhores resultados e desempenho em datasets de dimensão baixa e média. No entanto, as ferramentas que apresentaram tempos de execuções mais lentas, especialmente o Hive, parecem apanhar as ferramentas de melhor desempenho quando aumentamos os datasets de referência.

Description

Keywords

Big Data Hadoop SQL-on-Hadoop Query processing Big data analytics

Citation

Research Projects

Organizational Units

Journal Issue