Repository logo
 
Publication

Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review

dc.contributor.authorPinto, Rui Joãoen
dc.contributor.authorSilva, Pedro Miguel
dc.contributor.authorDuarte, Rui P.
dc.contributor.authorMarinho, Francisco AlexandrePT
dc.contributor.authorPimenta, Luís
dc.contributor.authorGouveia, António Jorge
dc.contributor.authorGonçalves, N.J.A.P.
dc.contributor.authorCoelho, Paulo
dc.contributor.authorZdravevski, Eftim
dc.contributor.authorLameski, Petre
dc.contributor.authorLEITHARDT, VALDERI
dc.contributor.authorGarcia, Nuno M.
dc.contributor.authorPires, Ivan Miguel
dc.date.accessioned2023-03-17T11:27:04ZPT
dc.date.available2023-03-17T11:27:04ZPT
dc.date.issued2023-02PT
dc.date.updated2023-03-04T10:59:34ZPT
dc.description.abstractThe prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient’s autonomy.pt_PT
dc.description.versionN/Apt_PT
dc.identifier.doi10.1016/j.heliyon.2023.e13601pt_PT
dc.identifier.issn2405-8440PT
dc.identifier.slugcv-prod-3140743PT
dc.identifier.urihttp://hdl.handle.net/10400.26/44204PT
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationResearch Center for Endogenous Resource Valorization
dc.titleAlgorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic reviewpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Center for Endogenous Resource Valorization
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F05064%2F2020/PT
oaire.citation.startPagee13601pt_PT
oaire.citation.titleHeliyonpt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameMonteiro Amaro Duarte
person.familyNamePimenta
person.familyNameGouveia
person.familyNameALVES PARENTE GONÇALVES
person.familyNameMachado Coelho
person.familyNameZdravevski
person.familyNameLameski
person.familyNameREIS QUIETINHO LEITHARDT
person.familyNameGarcia
person.familyNamePires
person.givenNameRui Pedro
person.givenNameLuís
person.givenNameAntónio Jorge Gonçalves de
person.givenNameNORBERTO JORGE
person.givenNamePaulo Manuel
person.givenNameEftim
person.givenNamePetre
person.givenNameVALDERI
person.givenNameNuno
person.givenNameIvan
person.identifiergIYE8M4AAAAJ
person.identifierJ-8511-2013
person.identifierhttps://scholar.google.com/citations?user=1EToDhEAAAAJ&hl=en
person.identifierJsOq45sAAAAJ&hl=pt-PT
person.identifier1165895
person.identifier.ciencia-id3A15-F41B-83B0
person.identifier.ciencia-id211F-55A0-4B63
person.identifier.ciencia-idBB1E-13DD-695E
person.identifier.ciencia-id7317-60FE-02EA
person.identifier.ciencia-id3013-BA01-9D14
person.identifier.ciencia-id5A11-57DE-3041
person.identifier.ciencia-idE217-DDF7-588F
person.identifier.ciencia-id0614-5834-E7F3
person.identifier.ciencia-idE719-0DEC-9751
person.identifier.ciencia-id211D-8B3D-0131
person.identifier.orcid0000-0002-6819-0985
person.identifier.orcid0000-0002-8080-234X
person.identifier.orcid0000-0002-9343-4603
person.identifier.orcid0000-0002-9218-2934
person.identifier.orcid0000-0001-7632-0690
person.identifier.orcid0000-0001-7664-0168
person.identifier.orcid0000-0002-5336-1796
person.identifier.orcid0000-0003-0446-9271
person.identifier.orcid0000-0002-3195-3168
person.identifier.orcid0000-0002-3394-6762
person.identifier.scopus-author-id14059938600
person.identifier.scopus-author-id8263533800
person.identifier.scopus-author-id39362601000
person.identifier.scopus-author-id35303109600
person.identifier.scopus-author-id8229776000
person.identifier.scopus-author-id56715367700
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.cv.cienciaid0614-5834-E7F3 | Valderi Reis Quietinho Leithardt
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationcdf614d5-03db-42bd-b5ea-35e0b2ed44d4
relation.isAuthorOfPublication7a7ff73e-8eee-43fd-8a7b-ba9d6325fb96
relation.isAuthorOfPublication65c4cb2c-b02a-4e69-b749-e76e14bde5b6
relation.isAuthorOfPublicationa851314c-21a4-49ec-ac00-6ac9d86eea6f
relation.isAuthorOfPublication31fec30b-2899-48d6-8a18-95b66451ac59
relation.isAuthorOfPublication2e696c49-c0b0-4979-96d1-75ec57411a5a
relation.isAuthorOfPublicationa73a3338-6cbb-4b31-9714-b3c7d1dc42f1
relation.isAuthorOfPublication36d53467-123a-4fdd-8a85-01abd3208ee1
relation.isAuthorOfPublicationab15f7c6-e882-406e-813d-2629e9cec5c8
relation.isAuthorOfPublicationf4e772ab-dfd9-451e-bcf0-5efd08c92418
relation.isAuthorOfPublicationdacc0e5f-34fe-4683-b46d-f8ddb90bef40
relation.isAuthorOfPublication.latestForDiscoverydacc0e5f-34fe-4683-b46d-f8ddb90bef40
relation.isProjectOfPublication05110dfa-e1d5-4a80-ad88-5c36b9c4552f
relation.isProjectOfPublication.latestForDiscovery05110dfa-e1d5-4a80-ad88-5c36b9c4552f

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PIIS2405844023008083.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Item-specific license agreed upon to submission
Description: