Publication
Improving Deep Learning Methodologies for Music Emotion Recognition
dc.contributor.author | Louro, Pedro Lima | |
dc.contributor.author | Redinho, Hugo | |
dc.contributor.author | Malheiro, Ricardo | |
dc.contributor.author | Paiva, Rui Pedro | |
dc.contributor.author | Panda, Renato | |
dc.date.accessioned | 2024-11-11T12:27:20Z | |
dc.date.available | 2024-11-11T12:27:20Z | |
dc.date.issued | 2024-10-25 | |
dc.description.abstract | Music Emotion Recognition (MER) has traditionally relied on classical machine learning techniques. Progress on these techniques has plateaued due to the demanding process of crafting new, emotionally-relevant audio features. Recently, deep learning (DL) methods have surged in popularity within MER, due to their ability of automatically learning features from the input data. Nonetheless, these methods need large, high-quality labeled datasets, a well-known hurdle in MER studies. We present a comparative study of various classical and DL techniques carried out to evaluate these approaches. Most of the presented methodologies were developed by our team, if not stated otherwise. It was found that a combination of Dense Neural Networks (DNN) and Convolutional Neural Networks (CNN) achieved an 80.20% F1-score, marking an improvement of approximately 5% over the best previous results. This indicates that future research should blend both manual feature engineering and automated feature learning to enhance results. | pt_PT |
dc.description.sponsorship | This work is funded by FCT - Foundation for Science and Technology, I.P., within the scope of the projects: MERGE - DOI: 10.54499/PTDC/CCI-COM/3171/2021 financed with national funds (PIDDAC) via the Portuguese State Budget; and project CISUC - UID/CEC/00326/2020 with funds from the European Social Fund, through the Regional Operational Program Centro 2020. Renato Panda was supported by Ci2 - FCT UIDP/05567/2020. | pt_PT |
dc.description.version | info:eu-repo/semantics/acceptedVersion | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.26/52756 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.relation | Music Emotion Recognition - Next Generation | |
dc.title | Improving Deep Learning Methodologies for Music Emotion Recognition | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Music Emotion Recognition - Next Generation | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FCCI-COM%2F3171%2F2021/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Programático/UIDP%2F05567%2F2020/PT | |
oaire.citation.conferencePlace | Covilhã, Portugal | pt_PT |
oaire.citation.endPage | 2 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | 30th Portuguese Conference on Pattern Recognition (RECPAD 2024) | pt_PT |
oaire.fundingStream | 3599-PPCDT | |
oaire.fundingStream | Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017/2018) - Financiamento Programático | |
person.familyName | Lima Louro | |
person.familyName | Redinho | |
person.familyName | Malheiro | |
person.familyName | Pinto de Carvalho e Paiva | |
person.familyName | Panda | |
person.givenName | Pedro Miguel | |
person.givenName | Hugo | |
person.givenName | Ricardo | |
person.givenName | Rui Pedro | |
person.givenName | Renato | |
person.identifier | WT5afVUAAAAJ | |
person.identifier.ciencia-id | C315-8AA7-2C25 | |
person.identifier.ciencia-id | 4517-42EE-8B4D | |
person.identifier.ciencia-id | B81A-CB99-A4DF | |
person.identifier.ciencia-id | AA16-002F-5AE3 | |
person.identifier.ciencia-id | 661A-31CC-8D19 | |
person.identifier.orcid | 0000-0003-3201-6990 | |
person.identifier.orcid | 0009-0004-1547-2251 | |
person.identifier.orcid | 0000-0002-3010-2732 | |
person.identifier.orcid | 0000-0003-3215-3960 | |
person.identifier.orcid | 0000-0003-2539-5590 | |
person.identifier.rid | L-9369-2017 | |
person.identifier.scopus-author-id | 55354413900 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 953b69db-f6a0-4a54-8618-93a912df6df6 | |
relation.isAuthorOfPublication | 90f8aa11-754d-424a-a877-891f5dc386ab | |
relation.isAuthorOfPublication | d38dd344-0942-4fcb-b740-a4713fb170e7 | |
relation.isAuthorOfPublication | 238ee6f8-61cd-49b4-9392-9e7763fd35f3 | |
relation.isAuthorOfPublication | 9cd470af-3968-45cc-ad6f-3b59e00ae823 | |
relation.isAuthorOfPublication.latestForDiscovery | d38dd344-0942-4fcb-b740-a4713fb170e7 | |
relation.isProjectOfPublication | 32dd2667-ca4e-430b-a130-687ba6eee2e9 | |
relation.isProjectOfPublication | b1f9aeba-aa48-4ee3-b890-a5b42a9a98c7 | |
relation.isProjectOfPublication.latestForDiscovery | 32dd2667-ca4e-430b-a130-687ba6eee2e9 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Louro et al. - 2024 - Improving Deep Learning Methodologies for Music Emotion Recognition.pdf
- Size:
- 99.46 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.85 KB
- Format:
- Item-specific license agreed upon to submission
- Description: