Name: | Description: | Size: | Format: | |
---|---|---|---|---|
11.95 MB | Adobe PDF |
Abstract(s)
Os veículos autónomos fazem cada vez mais parte do nosso quotidiano, seja em lazer
ou para outro tipo tarefas que sejam de difícil realização por parte do ser humano. Apesar de serem eficazes nas tarefas que realizam, estes estão limitados devido à autonomia da sua bateria. Este trabalho tem como objetivo o aumento da autonomia de um veleiro autónomo. Para tal foi desenvolvido um sistema auxiliar capaz de monitorizar e gerir a energia elétrica disponível no mesmo. Nesta dissertação, começou-se por definir quais as especificações pretendidas para os veleiros autónomos e, posteriormente os requisitos que o sistema auxiliar deveria apresentar.
Depois de discriminadas todas as especificações do sistema de gestão de energia,
elaborou-se um protótipo de uma placa que fizesse a gestão das baterias do veleiro autónomo FASt. Para a construção do protótipo efetuou-se um estudo dos vários microcontroladores existentes no mercado, bem como dos componentes necessários para o projeto. A escolha recaiu sobre o microcontrolador ATMega328P, sendo esse o centro de todo o sistema.Depois de escolhido o controlador, o mesmo foi programado para cumprir com os requisitos previamente identificados, fazendo uso do software e da linguagem utilizada na plataforma Arduino. A construção de placa do protótipo foi realizada já na fase final do projeto e posteriormente foram incorporados todos os componentes e realizados vários testes, recorrendo a uma simulação com recurso a um computador. Dos resultados obtidos conclui-se que este sistema auxiliar é uma mais valia para o veleiro, uma vez que é um sistema robusto, com uma elevada autonomia e capaz de assumir o comando do veleiro em caso de necessidade. Contudo, a integração do sistema a bordo do veleiro FASt está dependente da realização de mais testes.
Nowadays, autonomous vehicles are a part of our daily lives. They are used not only for leisure, but also for other tasks that are difficult to perform. Despite these advantages, the autonomy of the battery is a limitation.This project aims to increase the autonomy of an autonomous sailboat. Therefore, a system capable of monitoring and manage the energy available was developed. In this dissertation, initially were defined the specifications for autonomous sailboats and, subsequently, the requirements that the system should provide. After all specifications of the power management system were discriminated, a prototype of a board capable of manage the autonomous sailboat FASt’s batteries was constructed. To build the prototype, a market study of the various microcontrollers and components required for the project was made. In the end, the ATMEGA328P microcontroller was chosen. Subsequently, the controller was programmed to accomplish the requirements previously identified, using the software and language from Arduino platform. After prototype board construction and incorporation of all components, several simulation tests were preformed, using a computer.The results obtained make possible to conclude that the system developed is an asset to the sailboat, since it is a robust system, with a high autonomy and capable to take the sailboat command, if necessary. However, more tests should be done in order to allow the integration of the system on sailboat FASt.
Nowadays, autonomous vehicles are a part of our daily lives. They are used not only for leisure, but also for other tasks that are difficult to perform. Despite these advantages, the autonomy of the battery is a limitation.This project aims to increase the autonomy of an autonomous sailboat. Therefore, a system capable of monitoring and manage the energy available was developed. In this dissertation, initially were defined the specifications for autonomous sailboats and, subsequently, the requirements that the system should provide. After all specifications of the power management system were discriminated, a prototype of a board capable of manage the autonomous sailboat FASt’s batteries was constructed. To build the prototype, a market study of the various microcontrollers and components required for the project was made. In the end, the ATMEGA328P microcontroller was chosen. Subsequently, the controller was programmed to accomplish the requirements previously identified, using the software and language from Arduino platform. After prototype board construction and incorporation of all components, several simulation tests were preformed, using a computer.The results obtained make possible to conclude that the system developed is an asset to the sailboat, since it is a robust system, with a high autonomy and capable to take the sailboat command, if necessary. However, more tests should be done in order to allow the integration of the system on sailboat FASt.