Publication
Recognition of human activity based on sparse data collected from smartphone sensors
dc.contributor.author | Figueiredo, João | |
dc.contributor.author | Gordalina, Gonçalo | |
dc.contributor.author | Frazão Correia, Pedro | |
dc.contributor.author | Pires, Gabriel | |
dc.contributor.author | Lopes de Oliveira, Luís Miguel | |
dc.contributor.author | Martinho, Ricardo | |
dc.contributor.author | Rijo, Rui | |
dc.contributor.author | Assunção, Pedro | |
dc.contributor.author | Seco, Alexandra | |
dc.contributor.author | Fonseca-Pinto, Rui | |
dc.date.accessioned | 2021-07-17T00:01:58Z | |
dc.date.available | 2021-07-17T00:01:58Z | |
dc.date.issued | 2019-02-23 | |
dc.description.abstract | This paper proposes a method of human activity monitoring based on the regular use of sparse acceleration data and GPS positioning collected during smartphone daily utilization. The application addresses, in particular, the elderly population with regular activity patterns associated with daily routines. The approach is based on the clustering of acceleration and GPS data to characterize the user's pattern activity and localization for a given period. The current activity pattern is compared to the one obtained by the learned data patterns, generating alarms of abnormal activity and unusual location. The obtained results allow to consider that the usage of the proposed method in real environments can be beneficial for activity monitoring without using complex sensor networks. | pt_PT |
dc.description.sponsorship | This work has been financially supported by the IC&DT Project MOVIDA: SAICT-POL/23878/2016 | CENTRO-01-0145-FEDER-023878 and Project VITASENIOR-MT: SAICT-POL/23659/2016 | CENTRO-01-0145-FEDER-023659 with FEDER funding through programs CENTRO2020 and FCT. | pt_PT |
dc.description.sponsorship | CENTRO-01-0145-FEDER-023878 | |
dc.description.sponsorship | CENTRO-01-0145-FEDER-023659 | |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1109/ENBENG.2019.8692447 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.26/37107 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | IEEE | pt_PT |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/8692447 | pt_PT |
dc.subject | sparse data | pt_PT |
dc.subject | smartphone sensors | pt_PT |
dc.subject | human activity monitoring | pt_PT |
dc.subject | sparse acceleration data | pt_PT |
dc.subject | GPS positioning | pt_PT |
dc.subject | elderly population | pt_PT |
dc.subject | learned data patterns | pt_PT |
dc.subject | localization | pt_PT |
dc.title | Recognition of human activity based on sparse data collected from smartphone sensors | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.citation.conferencePlace | Lisbon, Portugal | pt_PT |
oaire.citation.endPage | 4 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG) | pt_PT |
person.familyName | Frazão Correia | |
person.familyName | Pires | |
person.familyName | Lopes de Oliveira | |
person.givenName | Pedro | |
person.givenName | Gabriel | |
person.givenName | Luís Miguel | |
person.identifier | https://scholar.google.com/citations?user=84oroekAAAAJ&hl=en | |
person.identifier.ciencia-id | 5211-FE18-4490 | |
person.identifier.ciencia-id | 9C19-9DF1-EB2B | |
person.identifier.ciencia-id | C512-647A-38F1 | |
person.identifier.orcid | 0000-0001-9451-136X | |
person.identifier.orcid | 0000-0001-9967-845X | |
person.identifier.orcid | 0000-0001-9412-5012 | |
person.identifier.scopus-author-id | 55399236400 | |
person.identifier.scopus-author-id | 6701432446 | |
person.identifier.scopus-author-id | 37065109600 | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | b873efa8-6ce1-4dce-b8be-e370f55cca2f | |
relation.isAuthorOfPublication | 049f8c38-bea3-414e-9de5-b45ae8b90ad7 | |
relation.isAuthorOfPublication | 4f447232-c9be-485e-be78-8cbded1a3e40 | |
relation.isAuthorOfPublication.latestForDiscovery | 049f8c38-bea3-414e-9de5-b45ae8b90ad7 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ENBENG_2019_preprint_draft_3457_MOVIDA.pdf
- Size:
- 364.04 KB
- Format:
- Adobe Portable Document Format