Repository logo
 
Publication

Robot localization from minimalist inertial data using a Hidden Markov Model

dc.contributor.authorAbreu, António
dc.date.accessioned2014-07-22T11:38:06Z
dc.date.available2014-07-22T11:38:06Z
dc.date.issued2014-05-14
dc.description.abstractHidden Markov Models (HMM) are applied to interoceptive data (in this case the sense of rotation by way of a gyroscope) acquired by a moving wheeled robot when contouring an indoor environment. We demonstrate the soundness of HMM to solve the problem of robot localization in a topological model of the environment, particularly the kidnapped robot problem and position tracking. In this approach, the environment topology is described by the sequence of movements a robot executes when contouring the environment. Movements are described in a fuzzy domain using distance traveled and curvature as features.por
dc.description.sponsorshipCom o apoio RAADRI.por
dc.identifier.urihttp://hdl.handle.net/10400.26/6593
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherIEEEpor
dc.relation.publisherversionDOI: 10.1109/ICARSC.2014.6849794por
dc.subjectRobot localizationpor
dc.subjectMarkov Modelspor
dc.titleRobot localization from minimalist inertial data using a Hidden Markov Modelpor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceEspinho, Portugalpor
oaire.citation.endPage252por
oaire.citation.startPage247por
oaire.citation.titleICARSC/Robótica 2014por
rcaap.rightsopenAccesspor
rcaap.typeconferenceObjectpor

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
António Abreu_Paper_robotica2014_2ºT.pdf
Size:
384.4 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Item-specific license agreed upon to submission
Description: