Repository logo
 
Publication

A Pattern Recognition Framework to Investigate the Neural Correlates of Music

dc.contributor.authorGuedes, Ana Gabriela
dc.contributor.authorSayal, Alexandre
dc.contributor.authorPanda, Renato
dc.contributor.authorPaiva, Rui Pedro
dc.contributor.authorDireito, Bruno
dc.date.accessioned2023-11-06T13:36:22Z
dc.date.available2023-11-06T13:36:22Z
dc.date.issued2023-10-27
dc.description.abstractMusic can convey fundamental emotions like happiness and sadness and more intricate feelings such as tenderness or grief. Understanding the neural mechanisms underlying music-induced emotions holds promise for innovative, personalised neurorehabilitation therapies using music. Our study investigates the link between perceived emotions in music and their corresponding neural responses, measured using fMRI. Fifteen participants underwent fMRI scans while listening to 96 musical excerpts categorised into quadrants based on Russell’s valence-arousal model. Neural correlates of valence and arousal were identified in neocortical regions, especially within music-specific sub-regions of the auditory cortex. Through multivariate pattern analysis, distinct emotional quadrants were decoded with an average accuracy of 62% ±15%, surpassing the chance level of 25%. This capacity to discern music’s emotional qualities has implications for psychological interventions and mood modulation, enhancing music-based treatments and neurofeedback learning.pt_PT
dc.description.sponsorshipThis work has been supported by Fundação para a Ciência e Tecnologia, grant EXPL/PSI-GER/0948/2021. Renato Panda was supported by Ci2 - FCT UIDP/05567/2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.urihttp://hdl.handle.net/10400.26/47857
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.relationSmart Cities Research Center
dc.titleA Pattern Recognition Framework to Investigate the Neural Correlates of Musicpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleSmart Cities Research Center
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/EXPL%2FPSI-GER%2F0948%2F2021/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F05567%2F2020/PT
oaire.citation.conferencePlaceCoimbra, Portugalpt_PT
oaire.citation.endPage27pt_PT
oaire.citation.startPage26pt_PT
oaire.citation.title29th Portuguese Conference on Pattern Recognition (RECPAD 2023)pt_PT
oaire.fundingStream3599-PPCDT
oaire.fundingStream6817 - DCRRNI ID
person.familyNamePanda
person.givenNameRenato
person.identifierWT5afVUAAAAJ
person.identifier.ciencia-id661A-31CC-8D19
person.identifier.orcid0000-0003-2539-5590
person.identifier.scopus-author-id55354413900
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication9cd470af-3968-45cc-ad6f-3b59e00ae823
relation.isAuthorOfPublication.latestForDiscovery9cd470af-3968-45cc-ad6f-3b59e00ae823
relation.isProjectOfPublicationf6fe66f4-f0aa-4d74-a8b4-cef68402f3ed
relation.isProjectOfPublication91a1f43f-7ed3-4791-8ded-837ad57c2f14
relation.isProjectOfPublication.latestForDiscoveryf6fe66f4-f0aa-4d74-a8b4-cef68402f3ed

Files